Geometric Combinatorics in Polytopes and Spheres

多面体和球体中的几何组合

基本信息

  • 批准号:
    2246739
  • 负责人:
  • 金额:
    $ 8.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

A polytope is the convex hull of finitely many points in the space. The ancient Greeks studied polytopes such as the Platonic solids as they are ideal to model nature. In modern days, scientists have found many applications of polytopes in diverse fields such as optimization and computer science. This research project focuses on the combinatorial “invariants” of polytopes. For example, count the number V of vertices, E of edges, and F of facets of an arbitrary 3-dimensional polytope. Then no matter which polytope we choose, we always end up with getting the identity “V-E+F=2”. The goal of this research project is to develop new methods to study various invariants of polytopes and spheres that arise from face numbers or other combinatorial data. These tools may further extend our understanding of the interplay between combinatorics, algebra, and geometry. One of the central conjectures in geometric combinatorics was the g-conjecture; that is, to characterize the face numbers of simplicial polytopes and spheres of all dimensions. This conjecture was only proved very recently, and its resolution requires deep results from other fields such as commutative algebra and algebraic geometry. This project is dedicated to new methods to study polytopes and manifolds with particular geometry or topology. One goal is to investigate various combinatorial models such as the Stanley-Reisner ring and the stress spaces, and how the algebra translates into combinatorial relations among the face number. Another goal is to investigate how preset geometry and topology (for example, central symmetry) affects the combinatorics of polytopes or polyhedral complexes, and vice versa. The project has applications to computer sciences and the PI also plans to develop lecture notes and work with students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多面体是空间中许多点的凸船体。古希腊人研究多面体,如柏拉图立体,因为它们是理想的自然模型。在现代,科学家们发现了多面体在不同领域的许多应用,如优化和计算机科学。这个研究项目的重点是多面体的组合“不变量”。例如,计算任意三维多面体的顶点数V、边数E和面数F。那么无论我们选择哪个多面体,我们总是得到恒等式“V-E+F=2”。这个研究项目的目标是开发新的方法来研究由面数或其他组合数据产生的多面体和球体的各种不变量。这些工具可以进一步扩展我们对组合学、代数学和几何学之间相互作用的理解。几何组合学中的一个中心命题是g-猜想;也就是说,刻画所有维度的单纯多面体和球面的面数。这个猜想是最近才被证明的,它的解决需要来自其他领域的深入结果,如交换代数和代数几何。这个项目致力于研究具有特定几何或拓扑的多面体和流形的新方法。一个目标是研究各种组合模型,如斯坦利-Reisner环和应力空间,以及如何将代数转化为面数之间的组合关系。另一个目标是研究预设的几何和拓扑(例如,中心对称)如何影响多面体或多面体复合体的组合,反之亦然。该项目已应用到计算机科学和PI还计划开发讲义和学生工作。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailun Zheng其他文献

Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures
  • DOI:
    10.1007/s00454-024-00642-0
  • 发表时间:
    2024-04-12
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Isabella Novik;Hailun Zheng
  • 通讯作者:
    Hailun Zheng
Resetting amino acid metabolism of cancer cells by ATBsup0,+/sup-targeted nanoparticles for enhanced anticancer therapy
通过靶向 ATB+的纳米粒子重置癌细胞的氨基酸代谢以增强抗癌治疗
  • DOI:
    10.1016/j.bioactmat.2021.07.009
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    20.300
  • 作者:
    Longfa Kou;Xinyu Jiang;Yingying Tang;Xing Xia;Yingtao Li;Aimin Cai;Hailun Zheng;Hailin Zhang;Vadivel Ganapathy;Qing Yao;Ruijie Chen
  • 通讯作者:
    Ruijie Chen
A Retrospective Analysis of the Efficacy of Endoscopic Variceal Ligation versus Endoscopic Tissue Adhesive Injection in the Treatment of Esophagogastric Variceal Bleeding
内镜下静脉曲张结扎术与内镜下组织胶注射治疗食管胃静脉曲张出血的疗效回顾性分析
  • DOI:
    10.1159/000528519
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Wei Liu;Linxia Xu;F. Xu;Jianchao Wang;Mingyang Deng;Hailun Zheng;Zhenzeng Ma;Yongju Xue;Qizhi Wang;X. Ke
  • 通讯作者:
    X. Ke
Reconstructing simplicial polytopes from their graphs and affine 2-stresses
从图形和仿射 2 应力重建单纯多面体
  • DOI:
    10.1007/s11856-022-2459-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    I. Novik;Hailun Zheng
  • 通讯作者:
    Hailun Zheng
The rigidity of the graphs of homology spheres minus one edge
同调球图减去一条边的刚性
  • DOI:
    10.1016/j.disc.2020.112135
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hailun Zheng
  • 通讯作者:
    Hailun Zheng

Hailun Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Research Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
  • 批准号:
    2418414
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 8.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了