Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
基本信息
- 批准号:2246908
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For centuries, partial differential equations (PDE) have played a fundamental role in understanding physical and natural phenomena. Dispersive/wave equations model wave propagation phenomena which are ubiquitous in nature. They also describe the basic laws of quantum physics, which is one of the greatest achievements of the 20th century. This project studies fundamental questions about dispersive and wave equations by introducing ideas from probability theory. The results of the project will advance the mathematical theory of wave turbulence, which has important applications to plasma physics, nonlinear optics, and oceanography, and the analysis of Gibbs measures for Hamiltonian systems, which plays a key role in quantum field theory and statistical physics. Due to its scope and connections to physics and science, the project will also promote interdisciplinary interactions. As part of the project, the Principal Investigator (PI) is training junior researchers and contributes to maintaining the diversity in STEM disciplines at University of Southern California.This award supports work on five research projects (A-E). The first three projects are concerned with the mathematical theory of wave turbulence. In Project A, the PI extends the short kinetic time derivation of wave kinetic equation to longer kinetic times. This is a major step in the development of the theory, as it goes beyond the perturbative regime and will also shed light on the longstanding open problem of the long-time derivation of the Boltzmann equation. In Project B, the PI plans to generalize this derivation to cover the full range of conjectured scaling laws, which is physically well motivated and also leads to new mathematically interesting structures. New significant combinatorial structures and cancellations which are not present in the physics literature are expected to be discovered. Project C considers the wave turbulence problem for water waves, which has been studied since the 1960s by physicists. Mathematically, it is a quasilinear equation and substantial new ideas are required to obtain results similar to the ones available in the semilinear case. The last two projects concern Gibbs and other invariant measures in statistical physics and quantum field theory. Project D concerns the Gibbs measure for the 2D hyperbolic sine-Gordon equation, which is an important model that contains near-critical scenarios. Here, the goal is to further develop the random tensor theory introduced by the PI in earlier work. Project E investigates, through a combination of techniques from probability theory and integrable systems, the invariance of the white noise measure for the one-dimensional cubic nonlinear Schrödinger equation, which is critical but also completely integrable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几个世纪以来,偏微分方程(PDE)在理解物理和自然现象方面发挥了重要作用。色散/波动方程对自然界中普遍存在的波传播现象进行建模。它们还描述了量子物理学的基本定律,这是世纪最伟大的成就之一。本项目通过引入概率论的思想来研究色散方程和波动方程的基本问题。该项目的结果将推进波动湍流的数学理论,该理论在等离子体物理学,非线性光学和海洋学中具有重要应用,以及对哈密顿系统的吉布斯测度的分析,这在量子场论和统计物理学中起着关键作用。由于其范围和物理学和科学的联系,该项目还将促进跨学科的互动。作为该项目的一部分,首席研究员(PI)正在培训初级研究人员,并为保持南加州大学STEM学科的多样性做出贡献。该奖项支持五个研究项目(A-E)的工作。前三个项目是关于波浪湍流的数学理论。在项目A中,PI将波动动力学方程的短动力学时间推导扩展到更长的动力学时间。这是理论发展的重要一步,因为它超越了微扰机制,也将揭示玻尔兹曼方程长期推导的长期开放问题。在项目B中,PI计划将此推导推广到涵盖所有的约束标度律,这在物理上是很好的动机,也会导致新的数学上有趣的结构。新的显着的组合结构和取消,这是不存在于物理学文献中,预计将被发现。项目C考虑了水波的波动问题,物理学家从20世纪60年代开始研究。在数学上,这是一个拟线性方程和大量的新的想法,需要获得类似的结果,在半线性的情况下。最后两个项目涉及吉布斯和统计物理学和量子场论中的其他不变测度。项目D涉及二维双曲sine-Gordon方程的Gibbs测度,这是一个包含近临界场景的重要模型。在这里,我们的目标是进一步发展PI在早期工作中引入的随机张量理论。项目E通过概率论和可积系统的技术相结合,研究一维立方非线性薛定谔方程的白色噪声测度的不变性,这是关键的,但也是完全可积的。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Deng其他文献
Urban Land Development for Industrial and Commercial Use: A Case Study of Beijing
城市工商业用地开发:以北京为例
- DOI:
10.3390/su8121323 - 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Chuanzhun Sun;Chao Sun;Zhenshan Yang;Jikang Zhang;Yu Deng - 通讯作者:
Yu Deng
Utilization of Co-Zeolite imidazolate frameworks (Co-ZIF) as catalyst for organic transformations
利用咪唑基钴沸石骨架 (Co-ZIF) 作为有机转化催化剂
- DOI:
10.5897/jcems2014.0181 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Adewale Olamoyesan;Jiexiang Wang;Hua Zhang;Yu Deng;B. Owolabi;B. Chen - 通讯作者:
B. Chen
The effects of levofloxacin on rabbit fibroblast-like synoviocytes in vitro
左氧氟沙星对体外兔成纤维样滑膜细胞的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.8
- 作者:
Yang Tan;Kaihang Lu;Yu Deng;Hong Cao;Biao Chen;Hui Wang;Jacques Magdalou;Liaobin Chen - 通讯作者:
Liaobin Chen
A Latent Class Analysis of Physical Activity of Patients with Ankylosing Spondylitis Based on Health Promotion Model: A Cross-Sectional Study
基于健康促进模型的强直性脊柱炎患者体力活动潜类别分析:横断面研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hengzhi Fang;Yinghua Pan;Yu Deng;Yue Ding;Huiqin Gu;Xin;Mu Liu;Rui;Wenjie Zou;Meifen Zhang - 通讯作者:
Meifen Zhang
Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae
丙二酰辅酶A途径的代谢工程可在酿酒酵母中高效生产丙二酸
- DOI:
10.1016/j.ymben.2022.05.007 - 发表时间:
2022 - 期刊:
- 影响因子:8.4
- 作者:
Shiyun Li;Wenxuan Fu;Ruifang Su;Yunying Zhao;Yu Deng - 通讯作者:
Yu Deng
Yu Deng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Deng', 18)}}的其他基金
Long-time Behavior of Some Dispersive and Fluid Equations
一些色散和流体方程的长期行为
- 批准号:
1900251 - 财政年份:2019
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Studentship
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant