Approximation Theory and Complex Dynamics

逼近理论和复杂动力学

基本信息

  • 批准号:
    2246876
  • 负责人:
  • 金额:
    $ 18.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This project involves the study of approximation theory in the setting of complex functions, with applications to complex dynamics. Approximation theory seeks to understand the extent to which the behavior of a general function can be effectively modeled by that of functions drawn from a more restricted class. Efficient approximation of functions is of relevance for numerical calculation. Since the only calculations that can be carried out numerically are the elementary operations of addition, subtraction, multiplication, and division, in practical terms it is of importance to understand when the values of general functions are well approximated by the values of either polynomial or rational functions. In many situations, the values of the approximant resemble those of the general function only for a sampling of input values. What can be said about values of the approximant for other choices of input? This is the main question studied in this project, with the following application in mind: when a general function is iterated to produce a dynamical system, to what extent does the dynamical behavior of an approximant resemble the dynamical behavior of the original function? The project will also contribute to the development of human resources through educational outreach at the high school level as well as mentoring and training at the undergraduate and graduate levels, and will facilitate the interaction of different fields of mathematics through the organization of conferences and seminars.The Principal Investigator will study the approximation of analytic functions in one complex variable by polynomials, rational functions, and transcendental entire functions. Quasiconformal mappings will be a major tool in this study. The quasiconformal approach to this particular subject is largely unexplored, and affords control over geometric properties of the approximants such as location of critical points and critical values. Such control can be used to understand the intricate dynamics recently proven to exist for transcendental entire functions. Another anticipated application lies in an improved understanding of the geometries of lemniscates (level sets of polynomials or rational functions) which relate to the emerging field of pattern recognition as a tool to distinguish between different planar shapes. The PI also will investigate whether a better understanding of the geometry of polynomial or rational approximants yields new insight on the numerical implementation of root-finding algorithms which rely essentially on such approximants. Interactions between the different fields alluded to above (approximation theory, geometric function theory, complex dynamics, and numerical analysis) will be fostered via the organization of conferences, meetings, and seminars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及复数函数背景下的逼近理论的研究,以及在复数动力学中的应用。近似理论试图理解一般函数的行为可以在多大程度上被从更受限的类中提取的函数的行为有效地建模。函数的有效逼近对于数值计算具有重要意义。由于唯一可以进行数值计算的是加法、减法、乘法和除法的基本运算,因此在实际中理解一般函数的值何时被多项式函数或有理函数的值很好地逼近是很重要的。在许多情况下,近似值的值类似于一般函数的值,只是对于输入值的采样。关于其他输入选择的近似值,我们能说些什么?这是这个项目研究的主要问题,考虑到以下应用:当迭代一个一般函数以产生一个动力系统时,近似者的动力学行为在多大程度上类似于原始函数的动力学行为?该项目还将通过高中一级的教育推广以及本科生和研究生一级的指导和培训来促进人力资源的开发,并将通过组织会议和研讨会促进不同数学领域的互动。首席调查员将研究多项式、有理函数和超越整函数对一个复变量中的解析函数的逼近。拟共形映射将是本研究的主要工具。对于这一特定主题,拟共形方法在很大程度上是未被探索的,并且提供了对近似值的几何性质的控制,例如临界点和临界值的位置。这样的控制可以用来理解最近被证明存在于超越整体函数的复杂动力学。另一个预期的应用在于改进对Lemniscates(多项式或有理函数的水平集)的几何的理解,该几何与作为区分不同平面形状的工具的新兴模式识别领域有关。PI还将调查对多项式或有理逼近式几何的更好理解是否会对基本上依赖于此类逼近式的求根算法的数值实现产生新的见解。以上提到的不同领域(近似理论、几何函数理论、复杂动力学和数值分析)之间的互动将通过组织会议、会议和研讨会来促进。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirill Lazebnik其他文献

On the Shapes of Rational Lemniscates
  • DOI:
    10.1007/s00039-025-00704-2
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Christopher J. Bishop;Alexandre Eremenko;Kirill Lazebnik
  • 通讯作者:
    Kirill Lazebnik
Equilateral triangulations and the postcritical dynamics of meromorphic functions
  • DOI:
    10.1007/s00208-022-02507-4
  • 发表时间:
    2022-11-08
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Christopher J. Bishop;Kirill Lazebnik;Mariusz Urbański
  • 通讯作者:
    Mariusz Urbański
Correction to: Equilateral triangulations and the postcritical dynamics of meromorphic functions
  • DOI:
    10.1007/s00208-022-02522-5
  • 发表时间:
    2022-12-09
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Christopher J. Bishop;Kirill Lazebnik;Mariusz Urbański
  • 通讯作者:
    Mariusz Urbański

Kirill Lazebnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
  • 批准号:
    1904332
  • 财政年份:
    2019
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Standard Grant
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Matrix Theory and Complex Approximation: Estimating Norms of Functions of Matrices
应用矩阵理论和复近似:估计矩阵函数的范数
  • 批准号:
    1210886
  • 财政年份:
    2012
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Continuing Grant
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    313666-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 18.03万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了