Conference: Arkansas Spring Lecture Series

会议:阿肯色州春季系列讲座

基本信息

  • 批准号:
    2247139
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This award provides participant support for the Spring Lecture Series (SLS) on "Transport, mixing and fluids" at the University of Arkansas in Fayetteville, Arkansas, on May 5-7, 2023. The SLS has a rich history of bringing together junior and established researchers in cutting edge areas of mathematics and statistics with the goal of educating and elevating the next generation of talent. Turbulent mixing is a subject of broad importance in physics, engineering, geosciences and mathematics. Over the course of five lecturers, the principal speaker for the series, Anna Mazzucato, will introduce fundamental elements of the mathematical study of turbulent mixing and present state of the art results. Additionally, there will be ten one-hour lectures by invited speakers on related topics as well as a poster session by young researchers. A career panel will be included to foster the career development of junior participants. Finally, a public lecture presented by Lisette de Pillis will present the art and applications of mathematical modeling at a level suited to a broad audience. When a tracer is carried by a turbulent incompressible flow, it is rapidly dispersed throughout the fluid medium, that is, it becomes mixed. This dynamic is important to many areas of research, including atmospheric and oceanographic science, biology, and chemistry. Recently, major mathematical developments have improved society's understanding of mixing. These advances connect disciplines within analysis, namely partial differential equations (PDE), dynamical systems, and geometric measure theory. Results of this progress have been used to explore other problems in the analysis of PDE, such as the loss of regularity for transport equations. The lectures will present the mathematical fundamentals behind these processes as well as advanced results by the principal and invited speakers in order to provide participants with a broad and current perspective on the field. More information is available at https://fulbright.uark.edu/departments/math/research/spring-lecture-series/index.phpThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为春季讲座系列(SLS)提供参与者支持“运输,混合和流体”在阿肯色州费耶特维尔,阿肯色州,在2023年5月5日至7日的大学。SLS在汇集数学和统计学前沿领域的初级和成熟研究人员方面有着丰富的历史,其目标是教育和提升下一代人才。湍流混合是物理学、工程学、地球科学和数学中的一个重要课题。在五个讲师的过程中,该系列的主要发言人,安娜马祖卡托,将介绍湍流混合的数学研究的基本要素和目前的最先进的结果。此外,将有十个一小时的讲座,由特邀演讲者就相关主题以及海报会议由年轻的研究人员。将包括一个职业小组,以促进初级参与者的职业发展。最后,由Lisette de Pillis提出的公开讲座将介绍数学建模的艺术和应用,适合广大观众。当示踪剂被不可压缩的湍流携带时,它迅速分散在整个流体介质中,也就是说,它变得混合。这种动态对许多研究领域都很重要,包括大气和海洋科学,生物学和化学。最近,数学的重大发展提高了社会对混合的理解。这些进步连接学科分析,即偏微分方程(PDE),动力系统和几何测量理论。这一进展的结果已被用来探讨其他问题,在偏微分方程的分析,如输运方程的正则性损失。讲座将介绍这些过程背后的数学基础以及校长和特邀演讲者的先进成果,以便为参与者提供该领域的广泛和当前的观点。更多信息可在www.example.com上获得https://fulbright.uark.edu/departments/math/research/spring-lecture-series/index.phpThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ariel Barton其他文献

Ju l 2 01 7 PERTURBATION OF WELL POSEDNESS FOR HIGHER ORDER ELLIPTIC SYSTEMS WITH ROUGH COEFFICIENTS
Jul l 2 01 7 具有粗糙系数的高阶椭圆系统的适定性扰动
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ariel Barton
  • 通讯作者:
    Ariel Barton
Boundary-value Problems for Higher-order Elliptic Equations in Non-smooth Domains
非光滑域中高阶椭圆方程的边值问题
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ariel Barton;S. Mayboroda
  • 通讯作者:
    S. Mayboroda
A New Class of Harmonic Measure Distribution Functions
  • DOI:
    10.1007/s12220-013-9408-7
  • 发表时间:
    2013-03-29
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ariel Barton;Lesley A. Ward
  • 通讯作者:
    Lesley A. Ward
Higher-order elliptic equations in non-smooth domains: history and recent results
非光滑域中的高阶椭圆方程:历史和最新结果
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ariel Barton;S. Mayboroda
  • 通讯作者:
    S. Mayboroda
The $L^p$ Neumann problem for higher order elliptic equations
高阶椭圆方程的 $L^p$ 诺依曼问题
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ariel Barton
  • 通讯作者:
    Ariel Barton

Ariel Barton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Center: IUCRC Phase III University of Arkansas: Center for Membrane Applications, Science and Technology (MAST)
中心:IUCRC 第三阶段 阿肯色大学:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310905
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Equipment: CC* Campus Compute: A High-Performance Computing System for Research and Education in Arkansas
设备:CC* 校园计算:用于阿肯色州研究和教育的高性能计算系统
  • 批准号:
    2346752
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Arkansas Department of Health's Rapid Response Team Building Project
阿肯色州卫生部的快速反应团队建设项目
  • 批准号:
    10830007
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
Building Capacity for Critical Need STEM and Special Education Teachers in Southeast Arkansas
阿肯色州东南部急需 STEM 和特殊教育教师的能力建设
  • 批准号:
    2243016
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
REU Site: Summer Research in Physics at the University of Arkansas
REU 网站:阿肯色大学物理学暑期研究
  • 批准号:
    2244130
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Arkansas Department of Health's Wholesale/Manufactured Foods Maintenance for State Manufactured Food Programs and Special Project
阿肯色州卫生部针对州制造食品计划和特别项目的批发/制造食品维护
  • 批准号:
    10829501
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
Birth Defects Study to Evaluate Pregnancy exposureS (BD-STEPS) Core? Arkansas Center and Stillbirth
评估妊娠暴露的出生缺陷研究 (BD-STEPS) 核心?
  • 批准号:
    10765132
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
Cancer in Your Community: Strategies to Reduce Cancer and Chronic Disease in the Arkansas Delta
您所在社区的癌症:减少阿肯色三角洲癌症和慢性病的策略
  • 批准号:
    10780817
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
ExpandQISE: Track 2: QuAPB, Expanding Quantum Research and Education at the University of Arkansas at Pine Bluff
ExpandQISE:轨道 2:QuAPB,扩大阿肯色大学派恩布拉夫分校的量子研究和教育
  • 批准号:
    2228891
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
RII Track-2 FEC: Membrane Purification Platform for Continuous Biomanufacturing of Viral Vectors and Virus-like Particles in Arkansas and Beyond
RII Track-2 FEC:阿肯色州及其他地区用于病毒载体和病毒样颗粒连续生物制造的膜纯化平台
  • 批准号:
    2218054
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了