The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
基本信息
- 批准号:2247185
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is aimed at the study of local properties of solutions of elliptic partial differential equations (PDE) and their gradients. Examples of such solutions include the temperature distribution in a body, electromagnetic fields, and gravitational fields. One of the tools in the analysis of solutions to elliptic equations is the so-called frequency function, which describes the local complexity of the solution. The overreaching goal of the project is to understand how the frequency function controls various local characteristics of the solution and its gradient. The work on quantitative properties of solutions of elliptic equations has numerous applications in other areas of mathematics, including spectral geometry, geometric measure theory, control theory, and mathematical physics. The project provides research training opportunities for graduate students. The principal investigator (PI) is active in disseminating the new ideas and results obtained as part of this project through series of lectures and minicourses on the frequency function method. As an educational initiative within this project, the PI will prepare an expository article based on these series of lectures. The frequency function was introduced by Almgren and was applied to quantitative unique continuation for solutions of elliptic equations by Garofalo and Lin. Recent progress in the understanding of the behavior of the frequency function led to a proof of Nadirashvili's conjecture and a partial solution of Yau's conjecture. These results and the geometric combinatorial method on which they are based open up new possibilities in the study of analytic, geometric, and topological properties of solutions to second order elliptic PDE. One of the goals of the project concerns the study of solutions to elliptic equations with bounded frequency and their applications to Laplace eigenfunctions, which includes restriction estimates and localization properties of eigenfunctions. Another goal is to introduce a new framework to study random harmonic functions of bounded frequency and investigate the typical behavior of such functions. For a number of deterministic questions on the behavior of solutions of elliptic PDE that are currently out of reach, the PI studies the typical behavior of the corresponding random solutions defined by taking random combinations of the Steklov eigenfunctions with independent Gaussian coefficients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究椭圆偏微分方程(PDE)及其梯度解的局部性质。此类解决方案的示例包括体内的温度分布、电磁场和重力场。分析椭圆方程解的工具之一是所谓的频率函数,它描述解的局部复杂性。该项目的总体目标是了解频率函数如何控制解及其梯度的各种局部特征。关于椭圆方程解的定量性质的研究在数学的其他领域有许多应用,包括谱几何、几何测度论、控制论和数学物理。该项目为研究生提供研究培训机会。首席研究员(PI)通过一系列关于频率函数方法的讲座和迷你课程,积极传播作为该项目的一部分获得的新想法和结果。作为该项目中的一项教育举措,PI 将根据这一系列讲座准备一篇说明性文章。频率函数由 Almgren 引入,并由 Garofalo 和 Lin 应用于椭圆方程解的定量唯一连续。对频率函数行为的理解的最新进展导致了 Nadirashvili 猜想的证明和 Yau 猜想的部分解决。这些结果以及它们所基于的几何组合方法为二阶椭圆偏微分方程解的解析、几何和拓扑性质的研究开辟了新的可能性。该项目的目标之一涉及研究有界频率椭圆方程的解及其在拉普拉斯本征函数中的应用,其中包括本征函数的限制估计和局部化特性。另一个目标是引入一个新的框架来研究有界频率的随机调和函数并研究此类函数的典型行为。对于目前无法解决的有关椭圆偏微分方程解的行为的许多确定性问题,PI 研究了通过采用 Steklov 特征函数与独立高斯系数的随机组合定义的相应随机解的典型行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugenia Malinnikova其他文献
Wavelet characterization of growth spaces of harmonic functions
- DOI:
10.1007/s11854-014-0004-y - 发表时间:
2014-03-30 - 期刊:
- 影响因子:0.900
- 作者:
Kjersti Solberg Eikrem;Eugenia Malinnikova;Pavel A. Mozolyako - 通讯作者:
Pavel A. Mozolyako
Orthonormal Sequences in L 2(R d ) and Time Frequency Localization
- DOI:
10.1007/s00041-009-9114-9 - 发表时间:
2009-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Eugenia Malinnikova - 通讯作者:
Eugenia Malinnikova
Trace ideal criteria for embeddings and composition operators on model spaces
- DOI:
10.1016/j.jfa.2015.11.006 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Alexandru Aleman;Yurii Lyubarskii;Eugenia Malinnikova;Karl-Mikael Perfekt - 通讯作者:
Karl-Mikael Perfekt
On approximation of subharmonic functions
- DOI:
10.1007/bf02790259 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Yuril Lyubarskii;Eugenia Malinnikova - 通讯作者:
Eugenia Malinnikova
Coefficients Multipliers of Weighted Spaces of Harmonic Functions
- DOI:
10.1007/s00020-015-2221-x - 发表时间:
2015-02-17 - 期刊:
- 影响因子:0.900
- 作者:
Kjersti Solberg Eikrem;Eugenia Malinnikova - 通讯作者:
Eugenia Malinnikova
Eugenia Malinnikova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugenia Malinnikova', 18)}}的其他基金
Laplace Eigenfunctions and Unique Continuation
拉普拉斯本征函数和唯一延拓
- 批准号:
1956294 - 财政年份:2020
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
相似国自然基金
原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
- 批准号:31872221
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Development of on-chip membrane protein preparation method and structure/function analysis of giant membrane proteins
片上膜蛋白制备方法开发及巨膜蛋白结构/功能分析
- 批准号:
23K04926 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new soundness evaluation method using sensor function of anchor
利用锚的传感器功能开发新的稳健性评估方法
- 批准号:
23K04026 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of facial muscle function evaluation method for frailty prevention focusing on grooming of older adults
以老年人的仪容为重点,开发预防衰弱的面部肌肉功能评价方法
- 批准号:
23K16788 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of Method to analyze neural circuits of brain function using novel AAV tehnologies
利用新型 AAV 技术建立分析脑功能神经回路的方法
- 批准号:
23K14283 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Application of food function to novel sarcopenia prevention method based on fibrinolytic system
食物功能在基于纤溶系统的肌肉减少症预防新方法中的应用
- 批准号:
23H03316 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A novel method of measuring executive function in autistic adults with a view to developing adaptive support strategies
一种测量自闭症成人执行功能的新方法,旨在制定适应性支持策略
- 批准号:
2883671 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Studentship
Establishment of a new evaluation method for urban tree function based on the relationship between carbon stable isotope ratios and aquaporins
基于碳稳定同位素比值与水通道蛋白关系的城市树木功能评价新方法的建立
- 批准号:
23H03552 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using a point-of-care electrophysiological method to study the impact of neuro-sacral function on recovery after acute spinal cord injury
使用即时电生理学方法研究神经骶功能对急性脊髓损伤后恢复的影响
- 批准号:
477997 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Operating Grants
Development of a novel evaluation method for reproductive function by the application of artificial intelligence in ultrasound imaging of bovine ovaries
人工智能在牛卵巢超声成像中应用的生殖功能评价新方法的建立
- 批准号:
23H02389 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new oral function training method focusing on human brain functions and its effectiveness
关注人脑功能的口腔功能训练新方法的开发及其有效性
- 批准号:
23K09253 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




