Uniformization of non-uniform geometries
非均匀几何形状的均匀化
基本信息
- 批准号:2247364
- 负责人:
- 金额:$ 22.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent decades have witnessed increased interest in the understanding of fractal and random objects that exhibit non-uniform geometries. Fractals are spaces that possess either a degree of self-similarity, or roughness, or both, and randomness refers to uncertainty in these patterns. Non-uniform geometry here means that the geometric features of the given objects do not adhere to the same quantitative standards across all locations and scales. Within mathematics, substantial interest in the study of fractals comes from their applications in the theory of dynamical systems. Outside of mathematics, fractals have numerous applications, for instance, in antenna design, terrain analysis, and target recognition. This project revolves around questions and problems regarding surface uniformization and simultaneous conformal welding, in particular, in the presence of randomness. The principal investigator will adapt and extend conformal uniformization and welding techniques to new non-uniform and fractal dynamical settings. The investigator also intends to mentor students at various levels, from high school to Ph.D., and foster research in the actively evolving field of fractal geometry and dynamics. The geometrically non-uniform objects considered in this project are metric curves and spaces that are not quasisymmetrically equivalent to circles, equilateral triangulations, etc. Examples of such spaces are abundant in the dynamics of quadratic polynomials, in conformal welding problems, and in random uniformization. One specific goal of the project is to introduce a new class of random surfaces spread over the sphere and to consider the type problem for surfaces of this class. In the case when such surfaces are (almost surely) parabolic, the value distribution properties of associated functions, particularly the order of growth of such functions, will be investigated. Another goal is to develop simultaneous conformal welding tools and techniques that in turn will extend recent results on merging reflection groups with critically fixed anti-rational maps. The methods to be employed are complex analytic in nature. Success in this project will result in new contributions to the growing literature on random surface uniformization and conformal welding, will raise new questions in random value distribution, and will develop new tools which go beyond those employed in current methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,人们对分形和随机物体的非均匀几何形状的理解越来越感兴趣。分形是具有一定程度的自相似性或粗糙度或两者兼而有之的空间,随机性指的是这些模式的不确定性。这里的非均匀几何意味着给定对象的几何特征在所有位置和尺度上不遵守相同的定量标准。在数学中,对分形研究的浓厚兴趣来自于它们在动力系统理论中的应用。在数学之外,分形有许多应用,例如天线设计,地形分析和目标识别。该项目围绕着表面均匀化和同时保形焊接的问题和难题,特别是在随机性的存在下。主要研究人员将适应和扩展共形均匀化和焊接技术,以新的非均匀和分形动态设置。调查人员还打算指导从高中到博士的各个层次的学生,促进分形几何和动力学领域的研究。在这个项目中考虑的几何非均匀对象是度量曲线和空间,不拟对称相当于圆,等边三角形,等这样的空间的例子是丰富的动态二次多项式,保形焊接问题,并在随机均匀化。该项目的一个具体目标是引入一类新的随机曲面分布在球体上,并考虑这类曲面的类型问题。在这种情况下,当这样的表面是(几乎肯定)抛物线,相关的功能,特别是这种功能的增长顺序的值分布特性,将进行调查。另一个目标是开发同时保形焊接工具和技术,反过来将扩展最近的结果合并反射组与严格固定的反理性地图。所采用的方法是复杂的分析性质。该项目的成功将为随机表面均匀化和保形焊接的不断增长的文献做出新的贡献,将提出随机值分布的新问题,并将开发超越当前方法的新工具。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergiy Merenkov其他文献
Sergiy Merenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergiy Merenkov', 18)}}的其他基金
Geometric Properties of Fractals That Arise in Various Dynamical Settings
各种动态环境中出现的分形的几何性质
- 批准号:
1800180 - 财政年份:2018
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Quasisymmetric deformations of topologically planar fractal spaces
拓扑平面分形空间的拟对称变形
- 批准号:
1001144 - 财政年份:2010
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Uniformization and Rigidity of Sierpinski Carpets and Schottky Sets
谢尔宾斯基地毯和肖特基集的均匀化和刚性
- 批准号:
0653439 - 财政年份:2007
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
- 批准号:
0703617 - 财政年份:2006
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Determining Analytic Properties of Maps from Non-Analytic Data
从非分析数据确定地图的分析属性
- 批准号:
0400636 - 财政年份:2004
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
- 批准号:
2340925 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Continuing Grant
Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
- 批准号:
23KK0083 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
ERI: Stretch Effects on Combustion Characteristics of Flames with Non-Uniform Curvature
ERI:非均匀曲率火焰燃烧特性的拉伸效应
- 批准号:
2302003 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Measuring the non-uniform surface interactions experienced by a Janus particle
测量 Janus 粒子经历的非均匀表面相互作用
- 批准号:
2314405 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant
Techniques for Coping with Increasingly Non-uniform Memory Architectures
应对日益不均匀的内存架构的技术
- 批准号:
RGPIN-2019-04227 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Discovery Grants Program - Individual
Elucidating the positive role played by non-uniform temperature distribution around a gold nanoparticle under excitation of the plasmon band
阐明等离激元带激发下金纳米粒子周围的不均匀温度分布所发挥的积极作用
- 批准号:
22K04884 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Intrinsic curvature induced packing heterogeneity and non-uniform distribution of cholesterol and Abeta peptide in lipid bilayers
固有曲率诱导脂质双层中胆固醇和 Abeta 肽的堆积异质性和不均匀分布
- 批准号:
10333107 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Fundamentals and applications of surface plasmon resonance using non-uniform gratings in azobenzene materials
偶氮苯材料中使用非均匀光栅的表面等离子体共振的基础和应用
- 批准号:
RGPIN-2020-03881 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Discovery Grants Program - Individual
Development of new microstructure control method based on visualization of plastic deformation under non-uniform temperature strain rate fields
基于非均匀温度应变率场下塑性变形可视化的新型微观结构控制方法的开发
- 批准号:
20KK0321 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Imaging surface plasmon resonance in non-uniform gratings
非均匀光栅中的表面等离子体共振成像
- 批准号:
571776-2022 - 财政年份:2022
- 资助金额:
$ 22.37万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




