CAS: Computational Data-Driven Metal-Free Catalysts Discovery for Small Molecule Activation and Conversion

CAS:计算数据驱动的无金属催化剂发现,用于小分子活化和转化

基本信息

  • 批准号:
    2247481
  • 负责人:
  • 金额:
    $ 42.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

In this project, funded by the Chemical Structure, Dynamics & Mechanisms-B Program of the Chemistry Division, Jingyun Ye of the Department of Chemistry and Biochemistry at Duquesne University aims to design and discover energy-saving, environmentally friendly, and low-cost metal-free catalysts for small molecule activation. Small molecule conversions such as the conversion of carbon dioxide to useful chemicals and fuels have the potential to reduce reliance on fossil carbon sources and build a more renewable carbon cycle. The approach taken here is based on frustrated Lewis pairs (FLPs). This project aims to construct an open access FLP database and to combine quantum mechanical modeling with data science and machine learning to accelerate the discovery of novel FLPs with targeted catalytic reactivity for small molecule activation and conversion. The proposed research will have significant educational and research opportunities for the next generation of researchers in the cross-disciplinary fields of chemistry, computational modeling, materials science, catalysis, data science, and artificial intelligence, with a particular focus on promoting the participation of members of underrepresented groups and women in science. Frustrated Lewis pairs are the simple combination of a bulky Lewis acid and a bulky Lewis base that are sterically precluded from reacting with each other. The unquenched Lewis acid and Lewis base sites are available to accept and donate electron density, respectively, providing a unique route to the activation and catalytic conversion of small molecules. The overall research goal of this project is to reveal the structure-activity relationships of FLPs for small molecule activation and the design of novel and efficient metal-free catalysts for energy conversion and environmental concerns via the combination of density functional theory, data science, and machine learning. The project objectives are to: (1) construct an open-access FLPs database that contains structural, electronic, and energetic data of FLPs and their activity toward small molecule activation; (2) identify the structure-activity relationships of FLPs for carbon dioxide hydrogenation and alkyne semi-hydrogenation using machine learning; and (3) design FLPs with targeted properties for small molecule activation and catalysis via deep learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,由化学部化学结构,动力学机制-B计划资助,迪克讷大学化学与生物化学系的Jingyun Ye旨在设计和发现节能,环保,低成本的无金属催化剂用于小分子活化。 小分子转化,如将二氧化碳转化为有用的化学品和燃料,有可能减少对化石碳源的依赖,并建立一个更可再生的碳循环。 这里采用的方法是基于受挫的刘易斯对(FLP)。 该项目旨在构建一个开放访问的FLP数据库,并将联合收割机量子力学建模与数据科学和机器学习相结合,以加速发现具有小分子活化和转化的靶向催化反应性的新型FLP。拟议的研究将为化学,计算建模,材料科学,催化,数据科学和人工智能等跨学科领域的下一代研究人员提供重要的教育和研究机会,特别关注促进代表性不足的群体成员和女性参与科学。阻挫刘易斯对是大体积的刘易斯酸和大体积的刘易斯碱的简单组合,它们在空间上被阻止彼此反应。未淬灭的刘易斯酸和刘易斯碱位点可分别接受和提供电子密度,为小分子的活化和催化转化提供了独特的途径。该项目的总体研究目标是揭示FLP用于小分子活化的结构-活性关系,并通过密度泛函理论,数据科学和机器学习的结合,设计用于能量转换和环境问题的新型高效无金属催化剂。该项目的目标是:(1)构建一个开放访问的FLP数据库,其中包含FLP的结构、电子和能量数据及其对小分子活化的活性;(2)使用机器学习确定FLP用于二氧化碳加氢和炔半加氢的结构-活性关系;以及(3)通过深度学习设计具有小分子活化和催化目标特性的FLP。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyun Ye其他文献

Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study
Pd4/In2O3 模型催化剂上 CO2 加氢合成甲醇:DFT 和动力学相结合的研究
  • DOI:
    10.1016/j.jcat.2014.06.002
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Jingyun Ye;Chang-jun Liu;Donghai Mei;Qingfeng Ge
  • 通讯作者:
    Qingfeng Ge
Metal/metal-oxide interface catalysed thermal and electrochemical COsub2/sub conversion: a perspective from DFT-based studies
金属/金属氧化物界面催化的热和电化学二氧化碳转化:基于 DFT 研究的观点
  • DOI:
    10.1039/d3cc01733h
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Jingyun Ye;Qingfeng Ge
  • 通讯作者:
    Qingfeng Ge
Cupriavidus gilardii infection following heart failure: a case report and literature review
  • DOI:
    10.1186/s12879-025-10519-z
  • 发表时间:
    2025-02-05
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Yanwen Liu;Jianxin Gao;Jingyun Ye;Hui Han;Haiyan Zhu
  • 通讯作者:
    Haiyan Zhu
Catalyst Design for Decarbonization Center
脱碳中心催化剂设计
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Wasserscheid;J. Lercher;Varinia Bernales;A. V. Lilienfeld;Joachim Sauer;Susannah Scott;Victor Sussman;Hongcai Zhou;Laura Gagliardi UChicago;Joseph T. Hupp;N. Washton;John Anderson;K. Chapman;Juan de;Pablo UChicago;Omar Farha;Andrew L Ferguson;Rachel B. Getman;M. Neurock;Justin M. Notestein;Anna Wuttig;J. Siepmann;J. Vitillo;Zhihengyu Chen;Maia E Czaikowski;F. Fasulo;Hannah Fejzic;M. Ferrandon;Reggie Gomes;Soumi Haldar;Timur Islamoglu;David M. Kaphan;Maryam Mansoori;Kermani Umn;Daniel King;Xavier Krull;Špela Kunstelj;Chen;Jian Liu;Katherine E. McCullough;Abhishek Mitra;Huy Nguyen;Leon Otis;Andrew Ritchhart;Arup Sarkar;Julian Schmid;Gautam D. Stroscio;Jingyi Sui;Zoha H. Syed;Shreya Verma;Simon M. Vornholt;Wen Wang;Qining Wang;Haomiao Xie;Katherine E. McCullough;Saumil Chheda;Trent Graham;Ricardo A. Monter;Laura Gagliardi;M. Delferro;Jingyun Ye;D. Truhlar;M. R. Mian;Roshan Patel;Zihan Pengmei;Florencia A. Son;Timothy A. Goetjen;Alon Chapovetsky;Kira M. Fahy;Fanrui Sha;Xingjie Wang;S. Alayoglu
  • 通讯作者:
    S. Alayoglu

Jingyun Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Continuing Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
  • 批准号:
    EP/Y031032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Research Grant
Creating Hybrid Exponential Asymptotics for use with Computational Data
创建用于计算数据的混合指数渐近
  • 批准号:
    DP240101666
  • 财政年份:
    2024
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Discovery Projects
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Studentship
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
CIU: Implementation: Medium: Computational and Data Science Curriculum Exchange Faculty Community of Practice
CIU:实施:媒介:计算和数据科学课程交流教师实践社区
  • 批准号:
    2321037
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Embodied Interactive Environment for Advancing Data Sensing and Computational Thinking Skills in the Built Environment
协作研究:在建筑环境中提升数据感知和计算思维技能的具体交互环境
  • 批准号:
    2241785
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了