C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
基本信息
- 批准号:2247424
- 负责人:
- 金额:$ 32.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematicians use invariants to study and classify highly abstract objects. The key properties of a useful invariant are that it is computable and that it distinguishes many different objects. For dynamical systems, an important class of mathematical objects, the construction of invariants is very difficult. This project studies invariants of dynamical systems using abstract operator algebras (in particular C*-algebras). The specific invariant is the K-theory of the relevant operator algebra, which in turn is an invariant of the relevant dynamical system. The project will involve significant contributions from early-career researchers, graduate students, and undergraduate students, who will benefit from training through research involvement.The principal investigator will study the range of the Elliott invariant, which consists of K-theory and tracial information, for C*-algebras constructed from minimal and hyperbolic dynamical systems. This research represents a continuation of the investigator’s previous work. However, in addition to the study of K-theory as an abstract graded group, the investigator will also study the order structure on K-theory and the traces of the relevant C*-algebras. Furthermore, this research goes beyond the study of uniformly hyperbolic dynamical systems (e.g., Smale spaces) to study general expansive systems. Specific projects include the study of minimal homeomorphisms on odd dimensional spheres, the order structure on K-theory for minimal crossed products, the finer structure of Smale space C*-algebras, and the HK-conjecture for C*-algebras associated to dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学家使用不变量来研究和分类高度抽象的对象。一个有用的不变量的关键属性是它是可计算的,并且它可以区分许多不同的对象。动力系统是一类重要的数学对象,其不变量的构造是非常困难的。这个项目使用抽象算子代数(特别是C*-代数)研究动力系统的不变量。特定的不变量是相关算子代数的K-理论,而这又是相关动力系统的不变量。该项目将涉及早期职业研究人员,研究生和本科生的重要贡献,他们将通过参与研究而受益于培训。主要研究人员将研究由极小和双曲动力系统构造的C*-代数的Elliott不变量的范围,该范围由K理论和迹信息组成。这项研究是研究人员以前工作的继续。然而,除了研究作为抽象分次群的K-理论之外,研究者还将研究K-理论的序结构和相关C*-代数的迹。此外,这项研究超出了一致双曲动力系统的研究(例如,Smale空间)来研究一般的扩张系统。具体项目包括研究奇维球面上的极小同胚、极小交叉积的K-理论的序结构、Smale空间C*-代数的精细结构以及与动力系统相关的C*-代数的HK-猜想。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Deeley其他文献
Robin Deeley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Deeley', 18)}}的其他基金
Dynamics, Groupoids, and C*-Algebras
动力学、群群和 C* 代数
- 批准号:
2000057 - 财政年份:2020
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
相似国自然基金
V-K型CRISPR-associated transposase系统催化DNA定点插入的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
白介素-1受体相关激酶(Interleukin-1 receptor associated kinase,IRAK)-M调节哮喘气道炎症异质性和气道重塑以及相关机制的研究
- 批准号:81970025
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
Yes-Associated Protein(YAP) 在脊髓损伤胶质疤痕形成中的作用及其机制
- 批准号:81571190
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of complement component 5a in ANCA-associated vasculitis
研究补体成分 5a 在 ANCA 相关血管炎中的作用
- 批准号:
MR/Y000854/1 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
Postdoctoral Fellowship: EAR-PF: Linking soil nitrogen enrichment to mineral weathering and associated organic matter persistence
博士后奖学金:EAR-PF:将土壤氮富集与矿物风化和相关有机物持久性联系起来
- 批准号:
2305518 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship Award
Towards Evaluating and Managing Risks Associated with Legacy Wells and Offshore Gas Storage in Scotland
评估和管理与苏格兰传统油井和海上天然气储存相关的风险
- 批准号:
2902920 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Studentship
The role of proteases in the pathogenesis of DPP4i associated Bullous Pemphigoid
蛋白酶在 DPP4i 相关大疱性类天疱疮发病机制中的作用
- 批准号:
24K19182 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of Endocrine-Disrupting Chemicals as Contributors to Progression of Metabolic Dysfunction Associated Steatotic Liver Disease (EDC-MASLD)
内分泌干扰化学物质对代谢功能障碍相关脂肪性肝病 (EDC-MASLD) 进展的影响的调查
- 批准号:
10092670 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
EU-Funded
BullNet-Sperm biology and associated reproductive biotechnologies to assist the dairy and beef industries meet growing demands
BullNet-精子生物学和相关生殖生物技术可帮助乳制品和牛肉行业满足不断增长的需求
- 批准号:
EP/Y032098/1 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Research Grant
Using whole genome sequencing to identify non-coding elements associated with diabetes and related traits across ancestries
使用全基因组测序来识别与糖尿病相关的非编码元件和跨祖先的相关特征
- 批准号:
MR/Y003748/1 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Research Grant
Glut1+ cancer associated fibroblasts enforce a metabolic barrier to tumor T cell infiltration
Glut1癌症相关成纤维细胞增强了肿瘤T细胞浸润的代谢屏障
- 批准号:
10752508 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Decarbonisation of Welding and Associated Manufacturing Processes in the Application of Large Steelwork Structures
大型钢结构应用中焊接及相关制造工艺的脱碳
- 批准号:
2907597 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Studentship
Colitis-associated cancerサーベイランス精密化を目的とした分子病理学的解析
分子病理学分析旨在完善结肠炎相关癌症监测
- 批准号:
24K18532 - 财政年份:2024
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists