Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education

使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息

基本信息

  • 批准号:
    2300613
  • 负责人:
  • 金额:
    $ 84.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Computer science (CS) is an increasingly important topic for undergraduate students; it is where they learn to program and develop software. However, it is also a challenging subject for many students to learn. A key determinant of students' success in modern CS classrooms is whether and how they use self-regulated learning (SRL) skills, such as planning, goal setting, and adapting their learning strategies to meet new challenges. The aim of this project is to help develop theory to explain how students engage in self-regulation, specifically in CS classrooms, and how this impacts their learning outcomes. This CS-specific model of SRL is critical to help scientists develop effective interventions for improving student learning (e.g., teaching students how to set effective goals) because it will help computer science educators and researchers predict how students might respond to those interventions. To advance theory, this project will develop new methods for studying SRL in CS classrooms. Currently, one of the best ways to study SRL in detail is to have students think out loud as they work and learn, so scientists can understand what SRL skills and strategies students are using and why they are using them. However, this is a time-consuming process, and it is impractical to use in real classrooms. To address this challenge, this project will pair think-aloud data with the log data students produce when learning with technology, to verify how to use this log data as a measure of students’ SRL. Being able to rely on these automatically logged data will allow scientists to study SRL in authentic CS classrooms, at scale, with large, diverse groups of learners. These studies may also help determine how SRL processes in CS courses are similar or distinct from those in other STEM courses. The results of this project will help CS education researchers to develop more effective learning interventions, especially for students who are underrepresented in CS.This project will apply, test, and elaborate a model of self-regulated learning (SRL) in computer science (CS) education (i.e., SRCSL) by validating and analyzing fine-grained trace data from students' interactions with programming tools in authentic undergraduate classroom settings. SRL encompasses students' thoughtful pursuit of academic goals by planning, monitoring, controlling, and reflecting upon what and how they learn. These behaviors are a key determinant of students' success in many domains, including CS. Discipline-based models of SRL in CS are still nascent and largely untested in rigorous ways that reflect cutting-edge practices for data collection and validation that can scale to larger populations. The development of a SRCSL model requires large-scale collection of validated SRL traces from authentic CS classrooms. To do so, first the project will use laboratory studies to collect both digital trace data from programming tools and think-aloud protocol (TAP) data from students as they complete authentic learning activities, coding TAPs to identify SRL events. Researchers will align these two data sources, mapping digitally logged events to the verbal SRL events that they reflect, and then use the coded TAP data to validate inferences about what SRL processes the digital trace data indicate. Second, researchers will collect a large sample (N ≈ 2,000) of trace data from two CS courses and apply the validated mapping to identify SRL events, from digital trace data, as they occur in the classroom. This will afford analyses regarding the sequential, contingent, and dynamic nature of SRL, informing an empirically-supported initial model of SRCSL. The proposed model will also posit how SRL behaviors predict students' cognitive and non-cognitive course outcomes, how these relationships vary across course contexts, and how they are moderated by students' personal characteristics. This project is supported by NSF's EDU Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机科学(CS)是本科生越来越重要的主题;这是他们学习编程和开发软件的地方。然而,这对许多学生来说也是一个具有挑战性的课题。学生在现代CS课堂上取得成功的一个关键决定因素是他们是否以及如何使用自我调节学习(SRL)技能,如计划,目标设定和调整学习策略以应对新的挑战。这个项目的目的是帮助发展理论来解释学生如何进行自我调节,特别是在CS教室,以及这如何影响他们的学习成果。这种CS-specific SRL模型对于帮助科学家开发有效的干预措施以改善学生的学习至关重要(例如,教学生如何设定有效的目标),因为它将帮助计算机科学教育工作者和研究人员预测学生对这些干预措施的反应。为了推进理论,本项目将开发新的方法来研究在CS教室SRL。目前,详细研究SRL的最佳方法之一是让学生在工作和学习时大声思考,这样科学家就可以了解学生正在使用的SRL技能和策略以及他们为什么使用它们。然而,这是一个耗时的过程,并且在真实的教室中使用是不切实际的。为了应对这一挑战,本项目将把有声思维数据与学生在使用技术学习时产生的日志数据配对,以验证如何使用此日志数据作为学生SRL的衡量标准。能够依靠这些自动记录的数据将使科学家能够在真实的CS教室中大规模地研究SRL,其中有大量不同的学习者群体。这些研究也可能有助于确定CS课程中的SRL过程与其他STEM课程中的SRL过程相似或不同。该项目的结果将帮助计算机科学教育研究人员开发更有效的学习干预措施,特别是对计算机科学代表性不足的学生。该项目将应用,测试和阐述计算机科学(CS)教育中的自我调节学习(SRL)模型(即,SRCSL)通过验证和分析来自学生在真实的本科课堂环境中与编程工具交互的细粒度跟踪数据。SRL包括学生通过计划,监控,控制和反思他们学习的内容和方式来深思熟虑地追求学术目标。这些行为是学生在许多领域取得成功的关键决定因素,包括CS。CS中基于神经网络的SRL模型仍然处于萌芽状态,并且在很大程度上没有经过严格的测试,这些测试反映了可以扩展到更大人群的数据收集和验证的尖端实践。SRCSL模型的开发需要大规模收集来自真实CS教室的验证SRL痕迹。要做到这一点,首先,该项目将使用实验室研究来收集来自编程工具的数字跟踪数据和来自学生的有声思维协议(TAP)数据,因为他们完成了真实的学习活动,编码TAP以识别SRL事件。研究人员将对齐这两个数据源,将数字记录的事件映射到它们反映的口头SRL事件,然后使用编码的TAP数据来验证有关SRL处理数字跟踪数据的推断。其次,研究人员将从两个CS课程中收集大量的跟踪数据样本(N = 2,000),并应用经过验证的映射从数字跟踪数据中识别SRL事件,因为它们发生在教室中。这将提供关于SRL的顺序,偶然性和动态性质的分析,告知一个支持的SRCSL的初始模型。该模型还将探讨SRL行为如何预测学生的认知和非认知课程成果,这些关系如何在课程背景下变化,以及它们如何受到学生个人特征的调节。该项目由NSF的EDU核心研究(ECR)计划支持。ECR计划强调基础STEM教育研究,产生该领域的基础知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Greene其他文献

Correction to: “It is this very knowledge that makes us doctors”: an applied thematic analysis of how medical students perceive the relevance of biomedical science knowledge to clinical medicine
  • DOI:
    10.1186/s12909-020-02371-3
  • 发表时间:
    2020-11-13
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Bonny L. Dickinson;Kristine Gibson;Kristi VanDerKolk;Jeffrey Greene;Claudia A. Rosu;Deborah D. Navedo;Kirsten A. Porter-Stransky;Lisa E. Graves
  • 通讯作者:
    Lisa E. Graves

Jeffrey Greene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Greene', 18)}}的其他基金

Collaborative Research: Improving Undergraduate Student Success in Introductory STEM Courses Via Campus Data Systems and Targeted Support for Self-Regulated Learning
合作研究:通过校园数据系统和对自我调节学习的有针对性的支持,提高本科生在 STEM 入门课程中的成功率
  • 批准号:
    1821594
  • 财政年份:
    2018
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Standard Grant
Realizing the potential of digital libraries through the development of a self-regulated learning intervention aimed to foster conceptual understanding in science and history
通过发展自我调节的学习干预措施来实现数字图书馆的潜力,旨在促进科学和历史的概念理解
  • 批准号:
    1043990
  • 财政年份:
    2010
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Towards sensing and understanding fine-grained body postures in daily life using intelligent wearables with acoustic sensing
职业:利用具有声学传感功能的智能可穿戴设备来感知和理解日常生活中细粒度的身体姿势
  • 批准号:
    2239569
  • 财政年份:
    2023
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Continuing Grant
Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
  • 批准号:
    2300612
  • 财政年份:
    2023
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Continuing Grant
Search for dark matter in unexplored regions with directional sensitivity using super-fine-grained nuclear emulsion
使用超细粒度核乳剂以方向灵敏度搜索未探索区域中的暗物质
  • 批准号:
    22KJ3234
  • 财政年份:
    2023
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Long-term stability and environmental protection of structures in rock mass by mineral precipitation using carbonated water and fine-grained materials
使用碳酸水和细粒材料进行矿物沉淀的岩体结构的长期稳定性和环境保护
  • 批准号:
    22K04308
  • 财政年份:
    2022
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Malicious entity detection using fine-grained DNA-inspired behavioural modelling
使用细粒度 DNA 启发的行为模型进行恶意实体检测
  • 批准号:
    21F20785
  • 财政年份:
    2021
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SHF: Small: Beyond Accelerators - Using FPGAs to Achieve Fine-grained Control of Data-flows in Embedded SoCs
SHF:小型:超越加速器 - 使用 FPGA 实现嵌入式 SoC 中数据流的细粒度控制
  • 批准号:
    2008799
  • 财政年份:
    2020
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Standard Grant
Using Fine-Grained Quantitative and Qualitative Data to Enhance Curricula and Broaden Participation in Computer Science
使用细粒度的定量和定性数据来增强课程并扩大计算机科学的参与
  • 批准号:
    2030070
  • 财政年份:
    2020
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Standard Grant
Fine-grained mapping of hippocampal subregions using 7T MRI
使用 7T MRI 精细绘制海马分区
  • 批准号:
    413045
  • 财政年份:
    2019
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Fellowship Programs
Directional Dark Matter Search using Super-fine Grained Nuclear Emulsion and Super-resolution Technologies
使用超细粒度核乳剂和超分辨率技术进行定向暗物质搜索
  • 批准号:
    18H03699
  • 财政年份:
    2018
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fine-grained video retrieval from large-scale video using query sentences containing unknown concepts
使用包含未知概念的查询语句从大规模视频中进行细粒度视频检索
  • 批准号:
    18K11362
  • 财政年份:
    2018
  • 资助金额:
    $ 84.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了