ERI: Friction Stir Processing for Durability of Cobalt-Chromium-Molybdenum Biomaterials

ERI:搅拌摩擦加工提高钴铬钼生物材料的耐久性

基本信息

  • 批准号:
    2301491
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This Engineering Research Initiation (ERI) grant supports research generating new knowledge of advanced manufacturing techniques for biomedical applications, with significant economic and technological benefits, as well as improved patient outcomes. Cobalt-chromium-molybdenum alloys are used as the bearing surfaces of prosthetic joint replacements because of their hardness, toughness, and biocompatibility. However, wear and corrosion of prosthetic implant materials in the human body remain serious problems for many patients. Friction stir processing is an advanced manufacturing technique that uses friction from a rotating tool to alter the metal surface, resulting in mechanical and corrosion properties that are highly desirable for bearing surfaces. Improved knowledge of the friction stir processing advanced manufacturing technique benefits the U.S. economy and medical device manufacturing industry. It also benefits millions of patients who undergo total joint replacement surgeries each year. Extending the durability of a prosthetic joint implant has an enormous impact on the quality of life of these patients and could be the difference between an implant that lasts a lifetime and complicated revision surgeries to replace failed implants. This research is multidisciplinary and provides education and outreach opportunities to encourage increased participation of underrepresented groups in engineering research.Friction stir processing can increase the wear and corrosion resistance of materials by controlling the microstructure through extreme deformation and precise control over the thermal history of the material. This research elucidates how the cobalt-chromium-molybdenum alloy microstructure such as grain size, carbide precipitation, and phase transformations can be controlled, and how they affect both wear and corrosion resistance. Extreme deformation causes dynamic recrystallization and martensitic phase transformations, resulting in fine grains with high hardness and wear resistance. Mechanical stirring and controlled temperature cause micron-sized, uniformly distributed carbides that strengthen passive oxide surface layers to bolster corrosion resistance. The research team performs friction stir processing experiments on the cobalt-based biomaterials with a polycrystalline cubic boron nitride/tungsten-rhenium alloy tool, and determines optimum processing conditions such as rotation speed, traverse speed, and applied load. Pin-on-disk wear tests and potentiodynamic polarization/electrochemical impedance spectroscopy corrosion tests quantify the wear and corrosion resistance of the different processed surfaces using different loads, sliding speeds, and biological lubricants selected to mimic an in-vivo prosthetic hip implant. Numerical simulations capture the gained knowledge of the basic science and physical mechanisms in play during friction stir processing of cobalt-based biomaterials and enable processing plans for medical devices made from this important biomedical alloy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工程研究启动(ERI)资助支持研究产生先进制造技术的新知识,用于生物医学应用,具有显着的经济和技术效益,以及改善患者的预后。钴-铬-钼合金由于其硬度、韧性和生物相容性而被用作人工关节置换的承载表面。然而,假体植入材料在人体内的磨损和腐蚀仍然是许多患者的严重问题。搅拌摩擦加工是一种先进的制造技术,它利用旋转工具的摩擦力改变金属表面,从而获得轴承表面所需的机械和腐蚀性能。对搅拌摩擦加工先进制造技术的了解的提高有利于美国经济和医疗器械制造业。它还使每年接受全关节置换手术的数百万患者受益。延长人工关节植入物的耐用性对这些患者的生活质量有着巨大的影响,并且可能是持续终身的植入物与复杂的翻修手术之间的差异,以替换失败的植入物。这项研究是多学科的,并提供教育和推广机会,鼓励代表性不足的群体更多地参与工程研究。搅拌摩擦加工通过极端变形和精确控制材料的热历史来控制微观结构,可以提高材料的耐磨性和耐腐蚀性。本研究阐明了如何控制钴-铬-钼合金的微观结构,如晶粒尺寸,碳化物沉淀和相变,以及它们如何影响耐磨性和耐腐蚀性。极端变形引起动态再结晶和马氏体相变,导致具有高硬度和耐磨性的细晶粒。机械搅拌和控制温度可产生微米级均匀分布的碳化物,这些碳化物可增强钝化氧化物表面层,从而增强耐腐蚀性。研究团队使用多晶立方氮化硼/钨基合金刀具对钴基生物材料进行摩擦搅拌加工实验,并确定了最佳加工条件,如旋转速度,横移速度和施加载荷。销-盘磨损试验和动电位极化/电化学阻抗谱腐蚀试验使用不同的载荷、滑动速度和生物润滑剂对不同处理表面的耐磨性和耐腐蚀性进行量化,选择这些载荷、滑动速度和生物润滑剂来模拟体内人工髋关节植入物。数值模拟捕捉了钴基生物材料的摩擦搅拌加工过程中所获得的基础科学知识和物理机制,并使由这种重要的生物医学合金制成的医疗器械的加工计划成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quentin Allen其他文献

Multiscale Texture Features to Enhance Lubricant Film Thickness for Prosthetic Hip Implant Bearing Surfaces
多尺度纹理特征可增强假体髋关节植入物支撑表面的润滑油膜厚度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Fitsum Berhe Tewelde;Quentin Allen;Tianfeng Zhou
  • 通讯作者:
    Tianfeng Zhou
Field Guide to the Trees and Shrubs of the Miombo Woodlands
Miombo 林地树木和灌木实地指南
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul P. Smith;Quentin Allen
  • 通讯作者:
    Quentin Allen

Quentin Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Three dimensional material flow visualization in dissimilar friction stir welding by X-ray transmission imaging
通过 X 射线透射成像实现异种材料搅拌摩擦焊中的三维材料流动可视化
  • 批准号:
    24K17532
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization of friction stir welding process for joining of aluminum to steel
铝钢连接搅拌摩擦焊工艺优化
  • 批准号:
    RGPIN-2017-05127
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of fatigue crack prevention and corrosion protection by friction stir welding for steel structures
钢结构疲劳裂纹预防和搅拌摩擦焊防腐蚀研究进展
  • 批准号:
    22H01577
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Friction stir welding of metal and ceramics for fabrication of integrated structural member
用于制造集成结构件的金属和陶瓷的搅拌摩擦焊
  • 批准号:
    22K04726
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Autonomous-controlled fabrication of hybrid cold spray-friction stir processed next-generation high-entropy alloy surfaces and structural repair
混合冷喷涂搅拌摩擦加工下一代高熵合金表面的自主控制制造和结构修复
  • 批准号:
    571021-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Alliance Grants
Development of bonding technology for thin metal sheets using friction stir welding
开发薄金属板的搅拌摩擦焊接合技术
  • 批准号:
    21K18811
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Optimization of friction stir welding process for joining of aluminum to steel
铝钢连接搅拌摩擦焊工艺优化
  • 批准号:
    RGPIN-2017-05127
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous-controlled fabrication of hybrid cold spray-friction stir processed next-generation high-entropy alloy surfaces and structural repair
混合冷喷涂搅拌摩擦加工下一代高熵合金表面的自主控制制造和结构修复
  • 批准号:
    571021-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Alliance Grants
Dynamic thermo-mechanical phenomenon and multi-scale strengthening mechanism during friction stir weld-riveting process
搅拌摩擦焊铆接过程中的动态热力现象及多尺度强化机制
  • 批准号:
    21K14439
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simultaneous control of surface microstructure and residual stress using solid solution of tool elements during friction stir processing
在搅拌摩擦加工过程中使用工具元素固溶体同时控制表面微观结构和残余应力
  • 批准号:
    21K14438
  • 财政年份:
    2021
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了