ERI: Enhancing Life-cycle Resilience of Cable-Stayed Bridges to Extreme Winds through Areo-Structural Optimization

ERI:通过区域结构优化增强斜拉桥生命周期对极端风的抵御能力

基本信息

项目摘要

This Engineering Research Initiation (ERI) award will address key challenges in the life-cycle design of wind-sensitive cable-stayed bridges. Medium- and long-span cable-stayed bridges are gaining momentum in use, given their capability to span distances from 300 to 1000 meters. However, US coastal regions experience hurricanes and other extreme wind events that affect the performance and safety of cable-stayed bridges during construction, service, and long-term conditions. Taking advantage of the digital revolution and the continuous improvement of computer-aided simulations and data-driven design methods, this research will recast the design method for cable-stayed bridges currently used in the bridge industry based on heuristic experience-based design strategies that have relied only on wind tunnel testing or in-situ performance evaluation. A new simulation-based, multi-model, aero-structural design optimization methodology will seek material reduction while keeping the bridge’s required life-cycle performance and safety levels, thus achieving the desired reduction in carbon footprint. This research will synergistically combine education and outreach activities at a minority-serving institution, including curriculum development, training demonstrations in wind tunnel testing, and student tours to local bridge construction sites. This award contributes to the National Science Foundation (NSF) role in the National Windstorm Impact Reduction Program. Data generated from this project will be archived and made publicly available in the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) DesignSafe Date Depot (https://www.DesignSafe-ci.org). This research will develop a novel computational methodology for the aero-structural design optimization of cable-stayed bridges considering multiple phases of their life-cycle under extreme wind loading. The overarching goal is the development of a holistic design methodology that permits further exploring the effects of deck shape modifications on the life-cycle performance of the bridge under extreme winds to achieve a sustainable and cost-effective design while improving the life-cycle aeroelastic performance. The research will synthesize the state-of-the-art capabilities of bridge aerodynamics, linear and nonlinear aeroelasticity models, computational fluid dynamic simulations, machine learning, finite element modeling-based multi-model design, and optimization algorithms. The research objectives include (i) develop linear and nonlinear wind-resistant performance models for the life-cycle design of bridges, (ii) develop multi-fidelity aeroelastic surrogates for the shape-dependent emulation of fluid-structure interaction parameters, and (iii) formulate efficient multi-model surrogate-based aero-structural design optimization strategies. The research will address the aeroelastic life-cycle performance of a cable-stayed bridge when changing the bridge deck cross-section and other key design variables and the life-cycle aero-structural optimum design of a cable-stayed bridge for a particular location, local climate, and project specifications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动(ERI)奖将解决风向缆线座桥的生命周期设计中的关键挑战。鉴于它们的能力从300米到1000米,中型和长跨度的缆线正在使用中动力。但是,美国沿海地区经历了飓风和其他极端风事件,这些事件影响了在建筑,服务和长期条件期间有线桥梁的性能和安全性。利用数字革命以及计算机辅助模拟和数据驱动的设计方法的持续改进,这项研究将根据基于启发式经验的设计策略来重塑目前在桥梁行业中使用的缆线铺设的设计方法,这些桥梁仅依赖于风洞测试或SITU绩效评估。新的基于模拟的多模型,空气结构设计优化方法将寻求材料的减少,同时保持桥梁所需的生命周期性能和安全水平,从而实现所需的碳足迹所需的减少。这项研究将在少数派服务机构中协同结合教育和外展活动,包括课程开发,风洞测试中的培训示范以及前往当地桥梁建筑工地的学生参观。该奖项促进了国家科学基金会(NSF)在国家风暴影响计划中的角色。该项目产生的数据将在NSF支持的自然危害工程研究基础设施(NHERI)DesignSafe Date Depot(https://www.designsignsafe-ci.org)中进行存档和公开提供。这项研究将开发一种新型的计算方法,用于考虑其在极端风载下生命周期的多个阶段的电缆固定桥的空气结构设计优化。总体目标是开发一种整体设计方法,该方法允许进一步探索甲板形状修改对桥梁在极端风下的生命周期性能的影响,以实现可持续和具有成本效益的设计,同时改善生命周期的气动弹性性能。这项研究将综合桥梁空气动力学,线性和非线性空气弹性模型,计算流体动态模拟,机器学习,基于结局元素建模的多模型设计以及优化算法的最先进功能。研究目标包括(i)为桥梁生命周期设计开发线性和非线性风能性能模型,(ii)开发多保真气动弹性替代物,以依赖流体结构互动参数的形状依赖性仿真,(iii)(iii)构成了基于多模型的基于基于多模型的替代空气构造的优化设计最佳设计优化策略。这项研究将在更改桥梁甲板横截面和其他关键设计变量以及生命周期空气结构的最佳设计时,针对特定地点,地方气候和项目规格的缆线桥梁设计时,将解决有线桥梁的气体弹性生命周期表现。这是NSF的法定任务,并通过评估范围来表现出良好的依据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miguel Cid Montoya其他文献

Spatially temporally distributed informative path planning for multi-robot systems
多机器人系统的时空分布信息路径规划
  • DOI:
    10.48550/arxiv.2403.16489
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Binh T. Nguyen;Linh Nguyen;Truong X. Nghiem;Hung La;Jose Baca;Pablo Rangel;Miguel Cid Montoya;Thang Nguyen
  • 通讯作者:
    Thang Nguyen
Sequential aero-structural optimization method for efficient bridge design
A first look at cybersecurity of structures under wind
初探风下结构的网络安全
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miguel Cid Montoya;Carlos E. Rubio;Ahsan Kareem
  • 通讯作者:
    Ahsan Kareem

Miguel Cid Montoya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于协同增强子的遗传变异交互作用在胃癌发生中的关联及机制研究
  • 批准号:
    82304224
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PDT疗效系统增强型硫代尼罗蓝光敏剂的构建及其抗恶性实体瘤研究
  • 批准号:
    22368036
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于核酸四面体“信号增强塔”的微针分子识别系统在炎症因子风暴多层面实时监测中的研究和应用
  • 批准号:
    22374029
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
原子层沉积Pt表面等离激元增强氧化镓单晶薄膜的紫外探测性能研究
  • 批准号:
    62304129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
催化/传热协同诱导高熵Li2TiO3晶界调控及释氚增强机制
  • 批准号:
    52302075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Enhancing Participation of Historically Minoritized Groups in Alzheimer Disease and Related Dementias Research
加强历史上少数群体对阿尔茨海默病和相关痴呆症研究的参与
  • 批准号:
    10752461
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Enhancing Effectiveness of a Dissonance-Based Obesity Prevention Program
提高基于失调的肥胖预防计划的有效性
  • 批准号:
    10849600
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
  • 批准号:
    10736443
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Identifying Roadblocks to Antigen Expression and Enhancing Killing of HIV-Infected Cells That Are Refractory to Clearance
识别抗原表达的障碍并增强对难以清除的 HIV 感染细胞的杀伤
  • 批准号:
    10676567
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了