ERI: Revealing the Reconfiguration Dynamics of Lipid Bilayer and Its Hydration Structures with Nanoscale Resolution during Electroporation

ERI:以纳米级分辨率揭示电穿孔过程中脂质双层的重构动力学及其水合结构

基本信息

  • 批准号:
    2302013
  • 负责人:
  • 金额:
    $ 19.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

A fundamental question in life science is to understand and control how cell membranes respond to external stimuli. This is important in determining the efficacy of drug delivery. For example, electric fields can create transient pores on a cell membrane, a process called electroporation, which is used to deliver cargo into cells, but it remains a challenge to achieve efficient delivery without causing irreversible damage. This award will use sub-nanometer resolution imaging to capture how cell membranes dynamically respond upon applying an external electric field. The understanding of intracellular delivery gained will not only benefit the biomedical field, but also biomolecule manufacture, gene editing and other intracellular investigations. This imaging capability will also benefit the understanding of solid-liquid interface systems in applications including fuel cells, batteries, and corrosion/erosion processes. In synergy with the research activities, the knowledge of bio-interfaces and imaging techniques will be disseminated to the general public, by developing and using mobile and webpage apps for workflow visualization, doing demos of bio-interfaces to K-12 students and senior residents, and providing training to both undergraduate and graduate students. This award will use an atomic force microscope with sub-nanometer and high temporal resolution to offer the molecular-level imaging, with a focus on revealing the dynamic responses of lipid bilayer and its hydration structure under an external electric field. The understanding of nanoscale interactions involved in the drug delivery process are still limited due to lack of appropriate imaging tools. The key hypothesis in this work is that the hydration structure of lipid bilayer determines the nanoscale interactions of lipid bilayer with drug molecules and the biophysical behavior of lipid bilayer under the external stimuli. Three research thrusts will be initiated: i) imaging the dynamic changes of lipid bilayer under an electric field; ii) capturing the structural changes of hydration structures involved in lipid bilayer reconfiguration; and iii) establishing the structure-property relationship for different types of lipid and solution chemistry. The proposed research activities aim to resolve and understand the pore formation and sealing processes during electroporation of lipid bilayers and reveal the role of hydration structure in this process. The proposed research and education activities will bridge the long-standing knowledge gap in the molecular-level imaging of molecular phenomena at bio-interfaces and offer insights into better engineering of non-viral transfection methods for biomedical purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生命科学中的一个基本问题是理解和控制细胞膜如何响应外部刺激。这在确定药物递送的功效方面是重要的。例如,电场可以在细胞膜上产生瞬时孔,这是一种称为电穿孔的过程,用于将货物输送到细胞中,但在不造成不可逆损伤的情况下实现有效输送仍然是一个挑战。该奖项将使用亚纳米分辨率成像来捕捉细胞膜在施加外部电场时的动态响应。对细胞内递送的理解不仅有利于生物医学领域,而且有利于生物分子制造,基因编辑和其他细胞内研究。这种成像能力也将有利于理解应用中的固液界面系统,包括燃料电池,电池和腐蚀/侵蚀过程。与研究活动协同,生物界面和成像技术的知识将通过开发和使用移动的和网页应用程序进行工作流程可视化,向K-12学生和高级居民演示生物界面,并为本科生和研究生提供培训,向公众传播。该奖项将使用具有亚纳米和高时间分辨率的原子力显微镜提供分子水平的成像,重点是揭示脂质双层及其水合结构在外部电场下的动态响应。由于缺乏合适的成像工具,对药物递送过程中涉及的纳米级相互作用的理解仍然有限。本研究的关键假设是脂双分子层的水合结构决定了脂双分子层与药物分子的纳米级相互作用以及脂双分子层在外界刺激下的生物物理行为。三个研究重点将启动:i)成像的动态变化下的脂质双分子层的电场; ii)捕获的结构变化的水化结构参与脂质双分子层的重构;和iii)建立不同类型的脂质和溶液化学的结构-性能关系。拟议的研究活动旨在解决和理解脂质双层电穿孔过程中的孔形成和密封过程,并揭示水合结构在此过程中的作用。拟议的研究和教育活动将弥合长期存在的知识差距,在分子水平成像的分子现象在生物界面,并提供更好的工程非病毒转染方法的生物医学目的的见解。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHAN ZHOU其他文献

ABCC2 rs2273697 is associated with valproic acid concentrations in patients with epilepsy on valproic acid monotherapy
  • DOI:
    doi: 10.1691/ph.2018.7344
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    JUAN CHEN;QI-BIAO SU;YU-QIAN TAO;JIA-MING QIN;YI ZHOU;SHAN ZHOU;HONG-LIANG LI;ZHUO-JIA CHEN;YA-FANG ZHOU;LIE-MIN ZHOU;XUE-DING WANG;MIN HUANG
  • 通讯作者:
    MIN HUANG

SHAN ZHOU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
  • 批准号:
    MR/X035166/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
  • 批准号:
    2337495
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
  • 批准号:
    BB/X007278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
REVEALing Signatures of Habitable Worlds Hidden by Stellar Activity
揭示恒星活动隐藏的宜居世界的特征
  • 批准号:
    EP/Z000181/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
From Theory to Thrust: Revealing the Role of Actuation and Sensing in How Undulatory Swimmers Change Speed
从理论到推力:揭示驱动和传感在波动游泳者如何改变速度中的作用
  • 批准号:
    2345913
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Revealing the Nature of Dark Matter with JWST and Euclid
通过 JWST 和欧几里得揭示暗物质的本质
  • 批准号:
    ST/X003086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Fellowship
Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
  • 批准号:
    2349830
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了