Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
基本信息
- 批准号:2302514
- 负责人:
- 金额:$ 21.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent research developments by the PI and others have revealed a connection between major open problems in number theory and quantum information theory. In number theory, Hilbert's 12th Problem (one of a famous list of 23 problems proposed in 1900) and the related Stark conjectures (formulated in the late 1970s) concern finding more explicit expressions for certain abstract structures involving algebraic numbers. In quantum information theory, Zauner's conjecture (1999) predicts the existence of highly regular geometric configurations called SICs, which describe quantum measurements. The research project involves investigating a connection between the Hilbert/Stark problems and Zauner's conjecture to provide new insights in both areas. Results from the project will allow for faster computation of SICs, which have potential applications to quantum state tomography as well as classical compressed sensing for radar. The project will also support a graduate student's involvement, allow the PI and his students to disseminate their work through conferences and seminars, support a research seminar in number theory at the PI's institution, and support outreach work by the PI to high school students.In the project, the PI will prove new results on complex analytic modular cocycles to refine the statement of the Stark conjectures for real quadratic fields and (through joint work with Appleby and Flammia) to conjecturally construct symmetric informationally complete positive operator-valued measures (SIC-POVMs or SICs) in every dimension. The project will develop the theory of (generalized, multiplicative) analytic modular cocycles and their "real multiplication values," reformulating (and proving results towards) the Stark conjectures in a language similar to the language of modular forms rather than L-functions. It will produce a geometric interpretation of explicit class field theory for real quadratic fields through structures generalizing SICs. Connections will be explored to Eisenstein and Shintani cocycles as studied by Charollois, Dasgupta, Greenberg, Hill, Sczech, and Solomon and to p-adic rigid meromorphic cocycles as studied by Darmon, Pozzi, and Vonk. Connections to quantum field theory will also be explored, and generalized beta integral relations from the mathematical physics literature will be applied to modular cocycles and their real multiplication values.This project is jointly funded by the Algebra and Number Theory in the Division of Mathematical Sciences and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI和其他人最近的研究进展揭示了数论和量子信息理论中主要开放问题之间的联系。在数论中,希尔伯特第12问题(1900年提出的23个问题之一)和相关的斯塔克定理(在1970年代后期制定)涉及为涉及代数数的某些抽象结构找到更明确的表达式。在量子信息理论中,Zauner的猜想(1999)预测了高度规则的几何构型的存在,称为SIC,它描述了量子测量。 该研究项目涉及调查希尔伯特/斯塔克问题和Zauner猜想之间的联系,以在这两个领域提供新的见解。该项目的结果将允许更快地计算SIC,这对量子态层析成像以及雷达的经典压缩传感具有潜在的应用。该项目还将支持研究生的参与,允许PI和他的学生通过会议和研讨会传播他们的工作,支持PI机构的数论研究研讨会,并支持PI向高中生的推广工作。在该项目中,PI将证明复解析模上循环的新结果,以改进真实的二次域的Stark拓扑的陈述,(通过与阿普尔比和Flammia的联合工作)在每个维度上构造对称信息完全正算子值测度(SIC-POVM或SIC)。该项目将发展(广义的,乘法的)解析模上循环及其“真实的乘法值”的理论,用类似于模形式而不是L-函数的语言重新制定(并证明结果)斯塔克图。它将通过泛化SIC的结构产生对真实的二次场的显式类场论的几何解释。联系将探讨爱森斯坦和Shintani上循环的研究Charollois,Dasgupta,格林伯格,希尔,Schzech,和所罗门和p-adic刚性亚纯上循环的研究Darmon,Pozzi,和Vonk。与量子场论的联系也将被探索,数学物理文献中的广义Beta积分关系将应用于模上圈及其真实的乘法值。本项目由数学科学部代数与数论和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gene Kopp其他文献
Occurrence and variance of ECG waveform abnormalities in canines and non-human primates: What is considered normal?
- DOI:
10.1016/j.vascn.2010.11.091 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Philip R. Atterson;Kate Voss;Gene Kopp - 通讯作者:
Gene Kopp
Combining safety pharmacology endpoints: Impedance based respiratory measurement via implantable telemetry device
- DOI:
10.1016/j.vascn.2010.11.110 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Philip R. Atterson;Kenneth R. Kearney;Kate Voss;Gene Kopp - 通讯作者:
Gene Kopp
Gene Kopp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gene Kopp', 18)}}的其他基金
Conference: Southern Regional Number Theory Conference
会议:南方区域数论会议
- 批准号:
2341365 - 财政年份:2024
- 资助金额:
$ 21.92万 - 项目类别:
Standard Grant
相似国自然基金
Cocycles的动力学及其在线性算子谱理论中的应用
- 批准号:10871090
- 批准年份:2008
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
- 批准号:
2212924 - 财政年份:2022
- 资助金额:
$ 21.92万 - 项目类别:
Standard Grant
Topological Study on Riemann Surfaces through Higher Cocycles
通过高次循环对黎曼曲面进行拓扑研究
- 批准号:
19H01784 - 财政年份:2019
- 资助金额:
$ 21.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-Commutative Cocycles and Dynamics of Systems with Hyperbolic Behavior
非交换余循环和具有双曲行为的系统动力学
- 批准号:
1764216 - 财政年份:2018
- 资助金额:
$ 21.92万 - 项目类别:
Continuing Grant
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2017
- 资助金额:
$ 21.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2016
- 资助金额:
$ 21.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stability of Cocycles of Perron-Frobenius Operators
Perron-Frobenius算子余循环的稳定性
- 批准号:
475092-2015 - 财政年份:2015
- 资助金额:
$ 21.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Geometric cocycles, differential K-theory, and non-abelian gerbes
几何余循环、微分 K 理论和非阿贝尔非洲菊
- 批准号:
1309099 - 财政年份:2013
- 资助金额:
$ 21.92万 - 项目类别:
Standard Grant
Cocycles over hyperbolic and partially hyperbolic systems
双曲和部分双曲系统上的余循环
- 批准号:
1301693 - 财政年份:2013
- 资助金额:
$ 21.92万 - 项目类别:
Standard Grant
Constructions of cocycles of finite groups by characteristic classes
通过特征类构造有限群的余循环
- 批准号:
23654018 - 财政年份:2011
- 资助金额:
$ 21.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RUI: Cocycles and rigidity for hyperbolic systems and actions
RUI:双曲系统和作用的余循环和刚度
- 批准号:
1101150 - 财政年份:2011
- 资助金额:
$ 21.92万 - 项目类别:
Standard Grant














{{item.name}}会员




