Categorical centers, cactus actions, and diagram algebras

分类中心、仙人掌动作和图代数

基本信息

  • 批准号:
    2302664
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This project delves into several research directions within representation theory, which is the mathematical framework for studying objects through their symmetries and the operations which preserve them. Such operations can carry a classical, or even more intriguingly a quantum algebraic structure. Originally appearing in physical models within statistical mechanics and quantum integrable systems, quantum groups and the theory surrounding them are now a thriving source of uncovering new mathematical principles. This project will develop a richer understanding of this theory by building a common ground for combining algebraic, combinatorial, and higher-structural categorical techniques for the study of quantum groups and associated diagram algebras. This will lead to a more unified approach and provide connections between several areas of mathematics, as well as potential physical applications. The project will involve the participation of undergraduate students and create opportunities for discussion and collaboration among early-career researchers. Specifically, the project will answer several questions about the representation theory of quantum groups and their related algebras from a categorical and a combinatorial perspective. In more detail, the centers of quantum groups are key to understanding the structure of their representations, which have further key symmetries captured by braid and cactus groups. The actions of quantum groups are intertwined with actions of Hecke and Temperley-Lieb algebras, informing each other's behavior and the structures of their representations. The main goals of the project are to first construct and diagonalize elements of the centers of categorified quantum groups, and use the resulting collection of idempotents to study the decomposition of categorical representations. Subsequently, the PI will develop new tools and build connections between braid and cactus group actions, both on the classical and higher-structure, categorical level, and in the process develop the representation theory of the cactus group. Finally, the PI will investigate a family of closely related diagram algebras—the two-boundary Temperley-Lieb algebras—and unite three radial viewpoints of their standard modules, which will enable the study of their decomposition and irreducibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目深入研究了表示理论中的几个研究方向,表示理论是通过对象的对称性和保持它们的运算来研究对象的数学框架。这样的运算可以带有经典的,甚至更有趣的是量子代数结构。最初出现在统计力学和量子可积系统的物理模型中的量子群和围绕它们的理论现在是揭示新数学原理的蓬勃发展的源泉。这个项目将通过建立一个共同的基础来发展对这一理论的更丰富的理解,以结合代数、组合和更高结构的范畴技术来研究量子群和相关的图代数。这将导致一个更统一的方法,并提供几个数学领域之间的联系,以及潜在的物理应用。该项目将吸引本科生的参与,并为早期职业研究人员之间的讨论和合作创造机会。具体地说,该项目将从范畴和组合的角度回答有关量子群及其相关代数的表示理论的几个问题。更详细地说,量子群的中心是理解其表示的结构的关键,这些表示具有更多的关键对称性,由辫子群和仙人掌群捕获。量子群的作用与Hecke和Temperley-Lieb代数的作用交织在一起,相互通知对方的行为及其表示的结构。该项目的主要目标是首先构造和对角化范畴量子群中心的元素,并使用由此产生的幂等元集合来研究范畴表示的分解。随后,PI将开发新的工具,并在经典和更高结构的范畴层面上建立辫子和仙人掌群体行为之间的联系,并在此过程中发展仙人掌群体的表征理论。最后,PI将调查一族密切相关的图代数--两边界Temperley-Lieb代数--并统一其标准模块的三个径向观点,这将使研究它们的分解和不可约性成为可能。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iva Halacheva其他文献

Iva Halacheva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Global Centers Track 2: Heat Adaptation
全球中心轨道 2:热适应
  • 批准号:
    2330587
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
  • 批准号:
    10078083
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Collaborative R&D
Depopulating Holding Centers during the COVID-19 Pandemic
COVID-19 大流行期间收容中心的人口减少
  • 批准号:
    2413624
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Global Centers Track 2: Equitable and User-Centric Energy Market for Resilient Grid-interactive Communities
全球中心轨道 2:面向弹性电网互动社区的公平且以用户为中心的能源市场
  • 批准号:
    2330504
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Global Centers Track 1: Understanding Climate Change Impacts on Transboundary Waters
全球中心轨道 1:了解气候变化对跨界水域的影响
  • 批准号:
    2330317
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Global Centers Track 2: Blue Climate Solutions
全球中心轨道 2:蓝色气候解决方案
  • 批准号:
    2330518
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
NSF Global Centers Track 2: Energy Sovereignty for Indigenous Peoples (ESIP)
NSF 全球中心轨道 2:土著人民的能源主权 (ESIP)
  • 批准号:
    2330387
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Global Centers Track 2: Nature-based Urban Hydrology Center
全球中心轨道 2:基于自然的城市水文中心
  • 批准号:
    2330413
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Community Building and Team Science Support for the Global Centers Program
全球中心计划的社区建设和团队科学支持
  • 批准号:
    2419639
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Modulation of descending brainstem output in the spinal cord during locomotion.
运动过程中脊髓下行脑干输出的调节。
  • 批准号:
    489770
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了