Invertibility and deformations in chromatic homotopy theory

色同伦理论中的可逆性和变形

基本信息

项目摘要

Invertibility is a concept in mathematics which can be studied any time we have a notion of multiplication, though it is dependent on the setting. Within the world of natural numbers, only 1 and -1 are invertible, yet all non-zero rational numbers have an inverse. In stable homotopy theory, the role that numbers play in ordinary arithmetic is taken by objects called spectra, which arise as algebraic invariants of topological spaces that are unaffected by continuous deformations. There are not very many invertible spectra, only spheres of various dimensions. Here again we observe a phenomenon that the situation changes when we pass to certain localizations analogous to passing from the integers to the rationals. The localizations in question are studied by chromatic homotopy theory, which aims to disassemble complicated homotopical information into building blocks with more understandable with more regular behaviors. This proposal aims to undertake a systematic study of the role of symmetries to get a grasp of the exotic invertible objects in chromatic homotopy, with the hope of understanding the extent to which such exotic objects can be understood as twisted versions of spheres. The main focus of the PIs broader impacts is the rebuilding and strengthening the mathematical community in the post-coronavirus pandemic, through efforts such as organizing workshops, conferences, seminars, discussions, as well as a research program at a mathematical institute, all with a particular emphasis on inclusivity and support for underserved groups.The research supported by this grant will work towards a better understanding of large-scale invertibility phenomena in chromatic homotopy theory, namely the exotic K(n)-local Picard groups, by attempting to organize a variety of ad-hoc computational methods into a systematic investigation using equivariant and representation-theoretic methods. At least two different avenues will be pursued: one is a shift of focus from subgroups to quotients of the Morava stabilizer group, already subtly present in the PIs previous work (with Barthel, Beaudry, Bobkova, Goerss, Henn, and Pham) on determinant spheres, and on the K(2)-local exotic Picard group at the prime 2. The other idea, pursued in a collaboration with Dicks, is a completely new use of Mazurs classical deformation theory of modular representations, which is much less explored but is promising new connections and deeper understanding of invertible objects in chromatic homotopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可逆性是数学中的一个概念,我们可以在任何时候研究乘法的概念,尽管它取决于设置。在自然数的世界中,只有1和-1是可逆的,但所有非零有理数都有逆数。在稳定同伦理论中,数字在普通算术中的作用被称为谱的对象所取代,谱是拓扑空间的代数不变量,不受连续变形的影响。不存在太多的可逆谱,只有不同维度的球面。这里我们再次观察到一个现象,当我们传递到某些局部化时,情况发生了变化,类似于从整数传递到有理数。我们用色同伦理论研究了这些局部化问题,其目的是将复杂的同伦信息分解成更容易理解、行为更规则的积木块。这个提议的目的是对对称性的作用进行系统的研究,以掌握色同伦中的奇异可逆对象,并希望了解这种奇异对象在多大程度上可以被理解为扭曲的球体。PI更广泛影响的主要重点是在冠状病毒大流行后重建和加强数学界,通过组织研讨会,会议,研讨会,讨论以及数学研究所的研究计划等努力,所有这些都特别强调包容性和对服务不足群体的支持。这笔赠款支持的研究将致力于更好地了解大型色同伦理论中的标度可逆现象,即奇异的K(n)-局部Picard群,通过尝试使用等变和表示论方法将各种特别计算方法组织成系统的研究。至少有两个不同的途径将被追求:一个是从子群的焦点转移到Morava稳定子群,已经巧妙地出现在PI以前的工作(与Barthel,Beaudry,Bobkova,Goerss,Henn和Pham)在行列式领域,以及在素数2的K(2)-局部奇异Picard群。另一个想法,追求在与迪克斯合作,是一个全新的使用马祖尔经典变形理论的模块化表示,这是少得多的探索,但有前途的新的连接和更深入的了解可逆对象的色同伦。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vesna Stojanoska其他文献

Picard groups of higher real $K$ -theory spectra at height $p-1$
更高实 $K$ 的皮卡德群 - 高度 $p-1$ 处的理论谱
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Drew Heard;A. Mathew;Vesna Stojanoska
  • 通讯作者:
    Vesna Stojanoska
Touching the ℤ2 in Three-Dimensional Rotations
接触三维旋转中的 ℤ2
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vesna Stojanoska;O. Stoytchev
  • 通讯作者:
    O. Stoytchev
Duality for topological modular forms
拓扑模形式的对偶性
  • DOI:
    10.4171/dm/368
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Vesna Stojanoska
  • 通讯作者:
    Vesna Stojanoska
K-theory, reality, and duality
K理论、现实和二元性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Drew Heard;Vesna Stojanoska
  • 通讯作者:
    Vesna Stojanoska
The Galois action and cohomology of a relative homology group of Fermat curves
费马曲线相对同调群的伽罗瓦作用和上同调
  • DOI:
    10.1016/j.jalgebra.2018.02.021
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Rachel Davis;R. Pries;Vesna Stojanoska;K. Wickelgren
  • 通讯作者:
    K. Wickelgren

Vesna Stojanoska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vesna Stojanoska', 18)}}的其他基金

Chromatic and Arithmetic Duality
色彩和算术二元性
  • 批准号:
    1812122
  • 财政年份:
    2018
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Homotopy Theory: Tools and Applications
同伦理论:工具和应用
  • 批准号:
    1719242
  • 财政年份:
    2017
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Dualizing modules in algebra and geometry
代数和几何中的对偶模块
  • 批准号:
    1606479
  • 财政年份:
    2014
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Dualizing modules in algebra and geometry
代数和几何中的对偶模块
  • 批准号:
    1307390
  • 财政年份:
    2013
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant

相似海外基金

Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Discovery Projects
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
  • 批准号:
    23K04023
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
  • 批准号:
    22KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
  • 批准号:
    2237237
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Research Grant
Deformations of graded commutative rings
分级交换环的变形
  • 批准号:
    572928-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
  • 批准号:
    ST/W005832/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了