Quantifying and Optimizing the Performance of Continuous-Variable Quantum Logic Operations

量化和优化连续可变量子逻辑运算的性能

基本信息

  • 批准号:
    2304816
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The main goal of the proposed research is to develop theoretical tools for assessing the performance of continuous-variable quantum logic gates, operations, and channels. Continuous-variable quantum computing is a promising approach to quantum information processing that is being pursued by leading academic groups around the world, and there are now even commercial efforts. Quantum computing has the potential to change the world in profound ways, by allowing for breaking encryption methods that are in wide use, allowing for faster simulation of quantum chemical reactions (thus playing an important role in medicine), and more recently it has been discovered that there is the potential for speed-up in optimization and machine learning. With these applications in mind, it is essential to understand the continuous-variable approach, by quantifying the performance of these quantum computers. It is also clear that this research and the related applications serves the national interest and mission of the NSF: "to advance the national health, prosperity and welfare; to secure the national defense." Additionally, there are broader impacts of this research for the Louisiana / Mississippi River Delta Region. The research will increase the training of graduate students at LSU in the expanding field of quantum information science. Graduate students will present results in the public forum of QuILT Day (Quantum Information in Louisiana) Day, which is a day-long conference held each semester that brings several research groups throughout Louisiana and nearby regions to discuss recent advances and ongoing research in quantum information.The technical contribution of the research is to quantify precisely by how much an experimental approximation of a continuous-variable operation deviates from its ideal implementation. Continuous-variable quantum gates are an essential component of quantum computing with the continuous quantum variables of light. Continuous-variable systems are present in many quantum information processing architectures, including superconducting, ion trap, and photonic devices. It is essential to devise methods for quantifying the performance of continuous-variable quantum devices. While there have been several advances in this domain in discrete-variable quantum information processing, there are not nearly as many tools available for the continuous-variable case. One of the main aims of this project is to rectify this situation, with the idea being to develop tools for quantifying the performance of continuous-variable quantum gates and operations. Particular examples include improving continuous-variable teleportation protocols to more effectively simulate an ideal channel, as well as developing novel machine learning techniques in order to discover and improve such protocols.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提出的研究的主要目标是开发评估连续变量量子逻辑门,操作和通道性能的理论工具。连续变量量子计算是一种很有前途的量子信息处理方法,正在被世界各地的领先学术团体所追求,现在甚至有了商业上的努力。量子计算有可能以深刻的方式改变世界,它允许破解广泛使用的加密方法,允许更快地模拟量子化学反应(因此在医学中发挥重要作用),最近人们发现,在优化和机器学习方面有加速的潜力。考虑到这些应用,有必要通过量化这些量子计算机的性能来理解连续变量方法。同样清楚的是,这项研究和相关应用服务于国家利益和NSF的使命:“促进国家健康、繁荣和福利;确保国防安全。”此外,本研究对路易斯安那州/密西西比河三角洲地区有更广泛的影响。这项研究将增加路易斯安那州立大学在量子信息科学领域的研究生培训。研究生将在被子日(路易斯安那州量子信息日)的公共论坛上展示结果,这是一个为期一天的会议,每学期举行一次,将路易斯安那州和附近地区的几个研究小组聚集在一起,讨论量子信息的最新进展和正在进行的研究。这项研究的技术贡献在于通过对连续变量操作的实验近似与其理想实现偏差的程度来精确量化。连续变量量子门是光的连续量子变量的量子计算的重要组成部分。连续变量系统存在于许多量子信息处理体系结构中,包括超导、离子阱和光子器件。设计量化连续变量量子器件性能的方法是至关重要的。虽然在离散变量量子信息处理领域已经取得了一些进展,但对于连续变量情况,几乎没有那么多可用的工具。该项目的主要目标之一是纠正这种情况,其想法是开发用于量化连续变量量子门和操作性能的工具。具体的例子包括改进连续变量隐形传态协议,以更有效地模拟理想通道,以及开发新的机器学习技术,以发现和改进此类协议。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact solution for the quantum and private capacities of bosonic dephasing channels
  • DOI:
    10.1038/s41566-023-01190-4
  • 发表时间:
    2023-04-06
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Lami, Ludovico;Wilde, Mark M.
  • 通讯作者:
    Wilde, Mark M.
Optimal input states for quantifying the performance of continuous-variable unidirectional and bidirectional teleportation
  • DOI:
    10.1103/physreva.107.062603
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    H. Mishra;Samad Khabbazi Oskouei;M. Wilde
  • 通讯作者:
    H. Mishra;Samad Khabbazi Oskouei;M. Wilde
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Wilde其他文献

Mark Wilde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Wilde', 18)}}的其他基金

FET: Small: Frontiers of Quantum Shannon Theory
FET:小型:量子香农理论的前沿
  • 批准号:
    2329662
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Resource Theories of Quantum Channels
CIF:小:量子通道的资源理论
  • 批准号:
    2315398
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Quantifying and Optimizing the Performance of Continuous-Variable Quantum Logic Operations
量化和优化连续可变量子逻辑运算的性能
  • 批准号:
    2014010
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF: Small: Resource Theories of Quantum Channels
CIF:小:量子通道的资源理论
  • 批准号:
    1907615
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: CQIS: Recoverability and Markovianity in Quantum Information
CIF:小:CQIS:量子信息中的可恢复性和马尔可夫性
  • 批准号:
    1714215
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and practical aspects of quantum communication protocols
职业:量子通信协议的理论和实践方面
  • 批准号:
    1350397
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
  • 批准号:
    10664298
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Establishment and implementation of a method for optimizing anti-corrosion performance based on couple between coating deterioration and electrochemical mechanism
基于涂层劣化与电化学机理耦合的防腐性能优化方法的建立与实现
  • 批准号:
    23H01494
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212370
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Optimizing the development and performance of recovered Carbon Black for applications in "green" off-the-road tires
优化回收炭黑的开发和性能,用于“绿色”越野轮胎
  • 批准号:
    567100-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Effects of Pasture Management Strategies on Carbon Sequestration, Soil Health, and Forage Productivity for Optimizing Cow-Calf Performance using Sustainable Production Practices
牧场管理策略对碳固存、土壤健康和饲料生产力的影响,以利用可持续生产实践优化牛犊性能
  • 批准号:
    576139-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
CNS Core:Small: Optimizing IP Anycast Performance at Scale
CNS 核心:小型:大规模优化 IP 任播性能
  • 批准号:
    2225448
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Predicting, Measuring and Optimizing the Performance of Nanocrystals in Photonic Devices
预测、测量和优化光子器件中纳米晶体的性能
  • 批准号:
    557759-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212371
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Optimizing mill performance through machine learning empowered sensing data analytics
通过机器学习赋能传感数据分析来优化工厂性能
  • 批准号:
    566919-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Optimizing Electrochemical Performance in Li-ion and Na-ion Battery Anodes through smart synthetic control and operando characterization
通过智能合成控制和操作表征优化锂离子和钠离子电池阳极的电化学性能
  • 批准号:
    2598169
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了