Postdoctoral Fellowship: EAR-PF: Exploring the significance of the spatial field from integrated DInSAR+GNSS time series for machine learning and volcano early warning applications

博士后奖学金:EAR-PF:探索集成 DInSAR GNSS 时间序列的空间场对于机器学习和火山预警应用的重要性

基本信息

  • 批准号:
    2304871
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Leading up to volcanic eruptions, the ground deforms in response to the movement of magma or hydrothermal fluids at depth. These surface motion patterns are recorded using high-resolution satellite remote sensing techniques such as Differential Interferometric Synthetic Aperture Radar (DInSAR), Digital Elevation Models (DEMs), and Global Navigation Satellite Systems (GNSS). Advanced computational models can then harness this data to determine volcanic source parameters and eruptive thresholds, track magmatic transport behavior, and create additional synthetic time series data for training machine learning algorithms. Furthermore, DInSAR, DEMs, and GNSS may be integrated to form a three-dimensional (east, north, up) time series with enhanced ground motion measurements. Integrated results are delivered either as a plotted time series at a single pixel location or as deformation maps over large regions. The plotted time series only contain a temporal component, while the deformation maps contain both temporal and spatial elements. Machine learning algorithms will first be trained using only the time-sensitive input, then compared to algorithms trained with integrated deformation maps consisting of both spatial and temporal properties. Analyzing the effects of spatial information within the machine learning algorithm’s training data will lead to essential awareness of crustal to subsurface dynamics, help classify each stage of a volcanic eruption, more accurately estimate locations and geometries of magmatic storage reservoirs or transport pathways, and better characterize or forecast environmental changes through time. This project contributes towards NSF’s mission to promote the progress of science, prosperity, and welfare. Societally relevant outcomes will include but are not limited to the development of enhanced processing frameworks for hazard early warning and volcanic research, the potential to save human life or protect community infrastructure due to natural hazards, and to increase public awareness and knowledge of scientific methods.The greatest challenges in the field of volcanic observation research involve how to prepare for, or when and where to anticipate eruptive or high-magnitude events. To better understand magmatic structure, eruptive behavior, and to improve hazard early warning systems, this project will support the development of a standard workflow in which machine learning approaches are used to model geodetic deformation data. Multi-band Synthetic Aperture Radar (SAR), Global Navigation Satellite Systems (GNSS), and high-resolution Digital Elevation Model (DEM) data collected over eruptive volcanoes in Iceland, Hawaii, and the Canary Islands will be integrated to generate novel, high-resolution, three-dimensional (east, north, up) time series containing surface deformation measurements with improved precision. This project will provide researchers with free, complex geodetic products and processing routines, and will expand on existing volcanic models by merging various source geometries and locations to better constrain the physical parameters unique to each volcanic system. Advanced numerical and physical models from collaborators at the USGS Volcano Observatories, University of Iceland, and the Spanish National Research Council (IPNA-CSIC and IGEO-CSIC), will use the satellite observations to quantify volcanic composition, resolve magmatic transport behavior over local to regional scales, invert for subsurface structures such as pressure bodies or sources of dislocation, and generate synthetic training data. Machine learning algorithms will be trained to detect anomalous motions, or gradients, between remote sensing images and time series for volcanic monitoring and forecasting applications. Plotted time series will be streamed through Long-Term-Short-Memory (LSTM) algorithms to predict the next, most-likely position of a ground point. Convolutional Neural Network (CNN) image classification algorithms will be trained using 3D, high-resolution, cumulative ground deformation maps, which involve dual spatiotemporal components. These methods will determine how interacting surface signals may be used to evaluate volcanic unrest, how topographic change from neighboring pixels affects the ways in which machine learning algorithms consume or process knowledge, and how efficient and reliable they are at forecasting various phases of an eruption. Ultimately, the end goal of this research is to build a scalable system capable of ingesting datasets from disparate sources and domains (i.e., seismic, gas emission, surface temperature, tide gauge, tiltmeters, thermal, etc.), and recognizing patterns across all signals to alert scientists to major natural hazard events. Doing so will advance geodetic technology and processing methods, support scientific analyses regarding the onset of hazardous events, and contribute towards eruption early warning for the safety of nearby communities.This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在火山爆发之前,地面会因深处岩浆或热液的运动而变形。这些表面运动模式是使用高分辨率卫星遥感技术,如差分干涉合成孔径雷达(DInSAR),数字高程模型(DEM)和全球导航卫星系统(GNSS)记录的。先进的计算模型可以利用这些数据来确定火山源参数和喷发阈值,跟踪岩浆输送行为,并创建额外的合成时间序列数据用于训练机器学习算法。此外,DInSAR、DEM和GNSS可以被集成以形成具有增强的地面运动测量的三维(东、北、上)时间序列。综合结果可以作为单个像素位置的绘制时间序列或作为大区域的变形图来提供。绘制的时间序列仅包含时间分量,而变形图包含时间和空间元素。机器学习算法将首先仅使用时间敏感输入进行训练,然后与使用由空间和时间属性组成的集成变形图训练的算法进行比较。分析机器学习算法训练数据中的空间信息的影响将导致对地壳到地下动态的基本认识,有助于对火山喷发的每个阶段进行分类,更准确地估计岩浆储存库或运输路径的位置和几何形状,并更好地表征或预测环境随时间的变化。该项目有助于NSF的使命,以促进科学,繁荣和福利的进步。具有社会相关性的成果将包括但不限于制定灾害预警和火山研究的强化处理框架、因自然灾害而拯救人类生命或保护社区基础设施的潜力以及提高公众对科学方法的认识和知识。火山观测研究领域的最大挑战涉及如何做好准备,或何时何地预测爆发性或高强度事件。为了更好地了解岩浆结构、喷发行为和改进灾害预警系统,该项目将支持开发一个标准工作流程,其中使用机器学习方法对大地形变数据进行建模。在冰岛、夏威夷和加那利群岛的火山喷发上空收集的多波段合成孔径雷达、全球导航卫星系统和高分辨率数字高程模型数据将被综合起来,以生成新的、高分辨率的三维(东、北、上)时间序列,其中包含更高精度的地表变形测量数据。该项目将为研究人员提供免费的复杂大地测量产品和处理程序,并将通过合并各种源几何形状和位置来扩大现有的火山模型,以更好地限制每个火山系统特有的物理参数。来自美国地质勘探局火山观测站、冰岛大学和西班牙国家研究理事会(IPNA-CSIC和IGEO-CSIC)的合作者的高级数值和物理模型将使用卫星观测来量化火山成分,解决当地到区域尺度的岩浆迁移行为,反演地下结构,如压力体或位错源,并生成合成训练数据。将训练机器学习算法,以检测遥感图像与火山监测和预报应用的时间序列之间的异常运动或梯度。绘制的时间序列将通过长期短记忆(LSTM)算法进行流传输,以预测地面点的下一个最可能的位置。卷积神经网络(CNN)图像分类算法将使用三维,高分辨率,累积地面变形图,其中涉及双重时空组件进行训练。这些方法将确定如何使用相互作用的表面信号来评估火山动荡,邻近像素的地形变化如何影响机器学习算法消耗或处理知识的方式,以及它们在预测火山爆发的各个阶段时的效率和可靠性。最终,这项研究的最终目标是建立一个可扩展的系统,能够从不同的源和域(即,地震、气体排放、表面温度、验潮仪、倾斜仪、热能等),并识别所有信号的模式,以提醒科学家注意重大自然灾害事件。这样做将促进大地测量技术和处理方法,支持对危险事件的发生进行科学分析,该项目由地球科学理事会共同资助,以支持人工智能/ML在地球科学中的进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brianna Corsa其他文献

Brianna Corsa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
  • 批准号:
    2305578
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
  • 批准号:
    2305217
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Linking soil nitrogen enrichment to mineral weathering and associated organic matter persistence
博士后奖学金:EAR-PF:将土壤氮富集与矿物风化和相关有机物持久性联系起来
  • 批准号:
    2305518
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Understanding the Mechanics of Caldera Collapse Eruptions
博士后奖学金:EAR-PF:了解火山口塌陷喷发的机制
  • 批准号:
    2305163
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Linking the past to the future: Using PETM fluvial records to understand the effects of climate change on rivers
博士后奖学金:EAR-PF:连接过去与未来:利用 PETM 河流记录了解气候变化对河流的影响
  • 批准号:
    2305463
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Feedbacks Between Controls of Stream Dry-Down Responses at the Rain-Snow Transition
博士后奖学金:EAR-PF:雨雪转变时河流干涸响应控制之间的反馈
  • 批准号:
    2305601
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: How Does Critical Zone Water Storage Impact Forest Drought Stress Across Complex Terrain?
博士后奖学金:EAR-PF:关键区域蓄水如何影响复杂地形的森林干旱胁迫?
  • 批准号:
    2305616
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了