Generalized Steenrod operations and equivariant geometry

广义 Steenrod 运算和等变几何

基本信息

  • 批准号:
    2305016
  • 负责人:
  • 金额:
    $ 31.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Topology is a subject that studies shapes. This subject was revolutionized in 1947 by Norman Steenrod when he introduced the Steenrod operations. These operations led to some of the most enigmatic results in geometry which popularized homotopy theory, a subbranch of topology, in the fifties and the sixties. This project will lead to advances in equivariant homotopy theory, an enhancement of homotopy theory which is sensitive to the symmetries of shapes. The resulting equivariant analogs of Steenrod operations will lead to new applications in equivariant geometry. The award will also be used to stimulate the research culture and support graduate students at New Mexico State University. The PI will establish a new method that generalizes the construction of classical Steenrod operations to equivariant homotopy theory and constructs equivariant Steenrod operations for all finite groups. Equivariant Steenrod operations will immediately lead to equivariant analogs of Stiefel-Whitney classes which can find many applications in the study of equivariant vector bundles and equivariant smooth manifolds. Atiyah Real vector bundles, which are important examples of equivariant vector bundles, will be studied. In particular, the James periodicity number of tautological Atiyah Real vector bundles will be determined using an equivariant analog of the Adams conjecture formulated using Atiyah Real K-theory. The PI will also continue to study periodic self-maps of chromatic homotopy theory and extend them to equivariant as well as motivic settings.This project is jointly funded by the Topology program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑学是一门研究形状的学科。1947年,诺曼·斯廷罗德(Norman Steenrod)引入了斯廷罗德手术,彻底改变了这一主题。这些操作导致了一些最神秘的结果在几何推广同伦理论,一个分支的拓扑结构,在五六十年代。该项目将导致等变同伦理论的进步,这是对形状对称性敏感的同伦理论的增强。 Steenrod操作的等变类似物将导致等变几何的新应用。 该奖项还将用于刺激研究文化和支持研究生在新墨西哥州州立大学。PI将建立一种新的方法,将经典Steenrod运算的构造推广到等变同伦理论,并为所有有限群构造等变Steenrod运算。等变Steenrod操作将立即导致Stiefel-Whitney类的等变类似物,它可以在等变向量丛和等变光滑流形的研究中找到许多应用。Atiyah真实的向量丛是等变向量丛的重要例子,将被研究。特别地,重言式Atiyah真实的向量丛的James周期数将使用Atiyah真实的K-理论制定的亚当斯猜想的等变模拟来确定。PI还将继续研究色同伦理论的周期性自映射,并将其扩展到等变和动机设置。该项目由拓扑计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prasit Bhattacharya其他文献

Prasit Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prasit Bhattacharya', 18)}}的其他基金

Conference: South Central Topology Conference III
会议:中南拓扑会议III
  • 批准号:
    2329432
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant

相似海外基金

Min-max problems related to Steenrod squares
与 Steenrod 平方相关的最小-最大问题
  • 批准号:
    572642-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantum Steenrod operations in non-monotone symplectic manifolds.
非单调辛流形中的量子斯汀罗德运算。
  • 批准号:
    2434378
  • 财政年份:
    2020
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Studentship
A framework of representation theory of the Steenrod algebra
Steenrod代数表示论框架
  • 批准号:
    24540091
  • 财政年份:
    2012
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Function Complexes And The Steenrod Algebra In Homotopy Theory
数学科学:同伦理论中的函数复形和斯廷罗德代数
  • 批准号:
    9207731
  • 财政年份:
    1992
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research on Elliptic Genera, Elliptic Cohomology and Modules over the Steenrod Algebra
数学科学:椭圆属、椭圆上同调和Steenrod代数模的研究
  • 批准号:
    9202041
  • 财政年份:
    1992
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Steenrod Actions on H-spaces
数学科学:H 空间上的 Steenrod 作用
  • 批准号:
    8219953
  • 财政年份:
    1983
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Geometric Applications of Steenrod Homotopy Theory
Steenrod 同伦理论的几何应用
  • 批准号:
    8102053
  • 财政年份:
    1981
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Steenrod Homotopy Theory and Its Applications
Steenrod 同伦理论及其应用
  • 批准号:
    7701628
  • 财政年份:
    1977
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
The Homology of the Steenrod Algebra
Steenrod 代数的同调
  • 批准号:
    7606750
  • 财政年份:
    1976
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
STEENROD ALGEBRA WITH APPLICATION TO ALGEBRAIC TOPOLOGY
STENROD 代数及其在代数拓扑中的应用
  • 批准号:
    7244398
  • 财政年份:
    1972
  • 资助金额:
    $ 31.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了