Fukaya categories of complex symplectic manifolds
复辛流形的深谷范畴
基本信息
- 批准号:2305257
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is concerned with a class of mathematical objects called symplectic resolutions. Symplectic resolutions are mathematical jewels; they possess a wealth of interesting structures, which are of interest to mathematicians and theoretical physicists working in different areas. As a result, new discoveries about symplectic resolutions often have a wide impact across many parts of mathematics and physics. As a mathematician working in an area called symplectic geometry, the PI (along with collaborators) will study certain algebraic structures associated to symplectic resolutions called Fukaya categories. The PI also will mentor undergraduate and graduate students wishing to enter this area of mathematics. To this end, the PI will write publicly available lecture notes aimed at advanced undergraduate or beginning graduate students.Fukaya categories of symplectic manifolds are a class of algebraic structures defined via nonlinear analysis, by counting pseudoholomorphic curves with appropriate Lagrangian boundary conditions. There are long-standing expectations that Fukaya categories of symplectic resolutions should be related to structures arising in representation theory. The PI intends to work on several questions in this direction, using techniques from microlocal sheaf theory. Such techniques have only recently become available thanks to the fundamental work of Ganatra--Pardon--Shende, and the PI believes that they are particularly promising for these types of questions. Along the way, the PI also plans to further develop the foundations of microlocal sheaf theory, in particular the theory of perverse microlocal sheaves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及一类被称为辛分解的数学对象。辛分解是数学上的宝石;它们拥有丰富有趣的结构,这是从事不同领域工作的数学家和理论物理学家感兴趣的。因此,关于辛分辨率的新发现往往对数学和物理学的许多部分产生广泛的影响。作为一名在辛几何领域工作的数学家,PI(与合作者一起)将研究与辛分解相关的某些代数结构,称为Fukaya范畴。PI还将指导希望进入这一数学领域的本科生和研究生。为此,PI将为高级本科生或初级研究生撰写公开可用的课堂讲稿。Fukaya辛流形是通过非线性分析定义的一类代数结构,通过计算具有适当拉格朗日边界条件的伪全纯曲线。长期以来,人们一直期望Fukaya辛分解范畴应该与表示理论中出现的结构相关。PI打算利用微局部鞘理论的技术,在这个方向上研究几个问题。这种技术直到最近才出现,这要归功于加纳特拉--原谅--申德的基础工作,国际刑警组织认为,对于这类问题,它们特别有希望。在此过程中,PI还计划进一步发展微局部鞘理论的基础,特别是倒置微局部鞘理论。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Gammage其他文献
Mirror symmetry for very affine hypersurfaces
非常仿射超曲面的镜像对称
- DOI:
10.4310/acta.2022.v229.n2.a2 - 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Benjamin Gammage;V. Shende - 通讯作者:
V. Shende
Mirror Symmetry for Truncated Cluster Varieties
截断簇品种的镜像对称
- DOI:
10.3842/sigma.2022.055 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Benjamin Gammage;Ian Le - 通讯作者:
Ian Le
Mirror symmetry for Berglund-Hübsch Milnor fibers
- DOI:
10.1016/j.aim.2024.109563 - 发表时间:
2020-10 - 期刊:
- 影响因子:1.7
- 作者:
Benjamin Gammage - 通讯作者:
Benjamin Gammage
Homological mirror symmetry at large volume
大体积同调镜像对称
- DOI:
10.2140/tunis.2023.5.31 - 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Benjamin Gammage;V. Shende - 通讯作者:
V. Shende
Benjamin Gammage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Gammage', 18)}}的其他基金
相似海外基金
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
- 批准号:
10683486 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Resistance exercise to mitigate glucocorticoid myopathy during Alzheimer’s
抗阻运动可减轻阿尔茨海默病期间的糖皮质激素肌病
- 批准号:
10667849 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Demographic Patterns of Eugenic Sterilization in Five U.S. States: Mixed Methods Investigation of Reproductive Control of the 'Unfit'
美国五个州优生绝育的人口统计模式:“不健康者”生殖控制的混合方法调查
- 批准号:
10640886 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Puerto Rico Collaborative Advancement of Research, Innovations, Best Practices and Equity for Children, Youth and Families (PR-CARIBE)
波多黎各儿童、青少年和家庭研究、创新、最佳实践和公平合作促进组织 (PR-CARIBE)
- 批准号:
10778490 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别: