CAS: Green Graphitic Carbon from Natural Precursors Using Graphene Oxide Additives: A Combined Experimental and Atomistic Approach
CAS:使用氧化石墨烯添加剂从天然前体中制备绿色石墨碳:实验与原子相结合的方法
基本信息
- 批准号:2306042
- 负责人:
- 金额:$ 39.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryGraphite is a critical raw material for the green transition and demand is increasing in markets including electric vehicles and green energy storage. Based on current production, demand from these markets will result in a significant supply shortfall unless new sources are identified. Unfortunately, petroleum-derived graphite is a nonrenewable resource and requires intensive energy for conversion to graphite while the supply of mined graphite is limited and insufficient to meet the growing demand. In contrast, bio-based resources (e.g., the lignin byproduct from papermaking, cellulosic materials) are renewable and sustainable precursors for conversion into graphite but these bio-based precursors contain oxygen which fosters non-graphitizing structure. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professors Randy Vander Wal and Adri van Duin and their research groups at Penn State University will explore an innovative process towards the graphitization of bio-based precursors called reactive templating in which graphene oxide additives and controlled heating will enable the formation of desired graphitic crystalline structure. Atomistic-scale simulations will be used to identify time and temperature constraints for this template-assisted conversion into graphite. The templated conversion may also lower the temperatures required for conversion of bio-based materials into graphite, saving energy while reducing CO2 emissions associated with the manufacturing. This project promotes K-12 STEM by contributing demonstrations to science camps held during summers at Penn State and developing science engagement activities for after-school events. By hosting first year women undergraduates during the academic year this project contributes to diversity in the STEM pipeline. Instructional materials for secondary and post-secondary educators contribute to workforce development. You tube videos highlighting the high temperature material conversion into graphite facilitates public connections with the research. Engagement of an industrial advisor on the project provides market-based feedback to the project.Technical summaryGraphitic carbons are ideally suited as electrode materials for battery-based energy storage systems given their low cost, high electrical conductivity, stable physicochemical properties, and long cycle life. A bio-based, renewable and sustainable precursor would displace the oil or coal derived compounds presently used in the manufacture of carbons for energy storage while reducing CO2 emissions associated with their production. This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, investigates the hypothesis that the addition of graphene oxide to biopolymers redirects the carbon structure from non-graphitizing to graphitizing during high temperature treatment stages. The postulate is that the biopolymer matrix radicals cross-link with those on the graphene oxide, rather than with other biopolymer sited radicals, thereby templating to the graphene oxide and forming graphitic structure upon higher heat treatment. The targeted biopolymers include cellulose and extracted lignin, which are both commercially available. The timescales and temperatures over which structure emerges are delineated by a combined experimental and atomistic-scale simulation approach. Reactive molecular dynamics simulations reveal the underlying mechanistic steps and relative contributions of biopolymer type, O-atom content on GO, and explore reaction parameters such as temperature over a far broader space than experimentally feasible, therein providing further experimental guidance for component fractions and elemental contents. This study also contributes the first direct comparison between carbon graphitization kinetics via high resolution transmission electron microscopy (HRTEM) and atomistic model simulations—with connection to electrical conductivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结是绿色过渡的关键原材料,而包括电动汽车和绿色能源存储在内的市场需求正在增加。根据当前的生产,除非确定新来源,否则这些市场的需求将导致供应不足。不幸的是,石油衍生的石墨是一种不可再生的资源,需要密集的能量才能转换为石墨,而开采石墨的供应有限且不足以满足不断增长的需求。相比之下,基于生物的资源(例如,造纸的木质素副产品,纤维素材料)是可再生和可持续的前体,用于转化为石墨,但这些基于生物的前体含有氧气,含有促进非塑性结构的氧气。在材料研究部的固态和材料化学计划的支持下,兰迪·范德·沃尔(Randy Vander Wal)和阿德里·范·杜因(Adri Van Duin)及其在宾夕法尼亚州立大学的研究小组的支持下,将探索一个创新的过程,用于基于生物的氧化物添加剂的基于生物的前体的图形,其中氧化物添加剂和受控加热将启用所需的图形结晶的形成。原子规模的模拟将用于确定该模板辅助转换为石墨的时间和温度限制。模板转换还可以降低将生物基材料转化为石墨所需的温度,从而节省能量,同时减少与制造业相关的二氧化碳排放。该项目通过向宾夕法尼亚州夏季举行的科学训练营做出示威游行并为课后活动开发科学参与活动,从而促进了K-12 STEM。通过在学年中举办一年级女性本科生,该项目有助于STEM管道的多样性。中学和大专教育者的教学材料为劳动力发展做出了贡献。 You Tube视频通过研究突出显示了高温材料转换为石墨设施的公共连接。该项目的工业顾问的参与为项目提供了基于市场的反馈。鉴于其低成本,高电导率,稳定的物理特性和较长的周期寿命,技术摘要含量的碳纤维碳理想情况下是基于电池的储能系统的电极材料。基于生物的,可再生和可持续的先驱物将取代制造碳储存碳中的石油或煤炭衍生的化合物,同时减少与生产相关的二氧化碳排放。该项目得到了材料研究划分中的固态和材料化学计划的支持,它调查了以下假设:在高温处理阶段,将氧化石墨烯添加到生物聚合物中,将碳结构从非雕刻化为石墨化。假设是生物聚合物基质自由基与氧化石墨烯上的生物聚合物交联,而不是与其他生物聚合物位置的自由基交联,从而在较高的热处理下向氧化石墨烯并形成图形结构。靶向的生物聚合物包括纤维素和提取的木质素,这些木质素均可商购。结构出现的时间尺度和温度是通过实验和原子尺度的仿真方法来描绘的。反应性分子动力学模拟揭示了生物聚合物类型,O-ATOM含量在GO中的基本机械步骤和相对贡献,并探索了反应参数,例如在远广播空间上的温度,而不是实验性可行的,从而为组件分数和元素分数提供了进一步的实验指南。这项研究还通过高分辨率透射电子显微镜(HRTEM)和原子模型模拟进行了碳石墨化动力学的首次直接比较 - 与电导率的联系。该奖项反映了NSF的法定任务,并已被认为是通过基金会的知识分子和宽广的影响来评估的珍贵的支持,以评估CRITERIA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy Vander Wal其他文献
Randy Vander Wal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy Vander Wal', 18)}}的其他基金
Upcycling Plastic Waste into Graphitic Carbon - Identifying the Roles of Oxygen Content and sp2 Extent in Graphene Forms: Complementary Tests with LDPE and PET
将塑料废物升级改造为石墨碳 - 确定石墨烯形式中氧含量和 sp2 程度的作用:LDPE 和 PET 的补充测试
- 批准号:
2309333 - 财政年份:2023
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
GOALI: Thermo-catalytic Decomposition of Natural Gas Coupled with Regeneration: Nanostructure Connections and Control
GOALI:天然气热催化分解与再生:纳米结构连接和控制
- 批准号:
2228140 - 财政年份:2022
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
EAGER: Soot Archeology - Fullerenic Nanostructure as an Indicator of C5 Precursor Chemistry
EAGER:烟灰考古学 - 富勒烯纳米结构作为 C5 前体化学的指标
- 批准号:
1342920 - 财政年份:2013
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
Soot Source Identification by Laser Derivatization (SSILD)
激光衍生化烟灰源识别 (SSILD)
- 批准号:
1236757 - 财政年份:2012
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
相似国自然基金
基于CO2转化合成高导电石墨的绿色合成机理及储能应用研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
蒽醌化合物增效Bacillus sphaericus绿色合成还原型石墨烯的机制
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
新型生物基介电弹性体复合薄膜的设计、绿色制备及性能研究
- 批准号:51903133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于流场超声协效作用的石墨烯绿色高效制备方法及电化学构效关系研究
- 批准号:51702223
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
多级孔可控的氮掺杂碳气凝胶的绿色制备及其在超级电容器中的应用基础研究
- 批准号:21704014
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Continuing Grant
Revolutionising Electrolysers for Low-Cost Green Hydrogen Production
革新电解槽以实现低成本绿色制氢
- 批准号:
IM240100216 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Mid-Career Industry Fellowships
EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
- 批准号:
10102891 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
EU-Funded
GreenPerovs: Green, Efficient, and Stable Halide Perovskites for Heterogeneous Photocatalysis
GreenPerovs:用于多相光催化的绿色、高效、稳定的卤化物钙钛矿
- 批准号:
EP/Y029291/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Fellowship