CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics

职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速

基本信息

  • 批准号:
    2306093
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Title: CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics Abstract: By 2030, it is expected that 80% of all electric power will flow through power electronics systems. Wide bandgap power modules that can tolerate higher voltages and currents than silicon-based modules are the most promising solution to reducing the size and weight of power electronics systems. These wide-bandgap power modules constitute powerful building blocks for power electronics systems, and wide bandgap-based converter/power electronics building blocks are envisaged to be widely used in power grids in low- and medium-voltage applications and possibly in high-voltage applications for high-voltage direct current and flexible alternating current transmission systems. One of the merits of wide bandgap devices is that their slew rates and switching frequencies are much higher than silicon-based devices. However, from the insulation side, frequency and slew rate are two of the most critical factors of a voltage pulse, influencing the level of degradation of the insulation systems that are exposed to such voltage pulses. The shorter the rise time, the shorter the lifetime. Furthermore, lifetime dramatically decreases with increasing frequency. Thus, although wide bandgap devices are revolutionizing power electronics, electrical insulating systems are not prepared for such a revolution; without addressing insulation issues, the electronic power revolution will fail due to dramatically increased failure rates of electrification components. This research plan pioneers overcoming the accelerated aging of insulation systems under wide bandgap-based voltage pulses, and its goal is to characterize, model, and mitigate this insulation degradation issue under atmospheric pressure. The integrated education plan will help to train the next generation of high electric field and electrical insulation engineers/ researchers, who are needed to maintain the competitive vitality of the U.S. power electronics and power system workforce regarding the two trends toward (I) high-power-density designs in various applications and (II) the increasing use of power electronics, leading to the accelerated aging issue. The education plan also includes outreach to students in grades K-12 and underrepresented groups.Accelerated aging and degradation of insulation systems in power system components as a consequence of exposure to the high slew rates (ranging from tens to hundreds of kV/μs) and repetitive (frequencies ranging from hundreds of kHz to MHz) voltage pulses that originate from emerging wide bandgap-based power electronics systems are one of the most significant barriers for the acceptance and utilization of wide bandgap power modules. This research endeavor aims to (1) characterize, (2) model, through a “theoretical-based Multiphysics” approach, and (3) mitigate the accelerated aging problem. Through comprehensive experimental investigations, the accelerated aging issue will be characterized, and the experimental data will also be used to validate the Multiphysics models developed. Furthermore, optimal mitigation methods to solve the accelerated aging problem will be determined through the models that will be developed and verified experimentally. Moreover, high-frequency electromagnetic transient models for rotating machines, transformers, cables, and transmission lines will be developed to determine (i) overvoltages, (ii) electrical stress, and (iii) thermal stress on different components including motor and transformer windings, and stress grading systems in electrical motors and cable terminations under wide bandgap-based voltage pluses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
职业生涯:由于来自宽带隙电力电子设备的快速、重复的电压脉冲,绝缘老化加速。摘要:到2030年,预计80%的电力将流经电力电子系统。宽禁带电源模块可以承受比硅基模块更高的电压和电流,是减小电力电子系统尺寸和重量的最有前途的解决方案。这些宽带隙电源模块构成了电力电子系统的强大构建块,基于宽带隙的转换器/电力电子构建块预计将广泛应用于低压和中压应用的电网中,并可能用于高压直流和灵活交流输电系统的高压应用。宽禁带器件的优点之一是它们的转换速率和开关频率比硅基器件高得多。然而,从绝缘方面来说,频率和转换速率是电压脉冲的两个最关键的因素,影响暴露在这种电压脉冲下的绝缘系统的劣化程度。上升时间越短,寿命越短。此外,随着频率的增加,寿命急剧缩短。因此,尽管宽带隙器件正在给电力电子设备带来革命性的变化,但电气绝缘系统还没有为这种革命做好准备;如果不解决绝缘问题,电子电力革命将因为带电元件故障率的急剧增加而失败。这项研究计划率先克服了基于宽带隙的电压脉冲下绝缘系统的加速老化,其目标是描述、模拟和缓解大气压下的绝缘退化问题。综合教育计划将有助于培养下一代高电场和电气绝缘工程师/研究人员,他们是保持美国电力电子和电力系统劳动力的竞争活力所必需的,以应对以下两个趋势:(I)各种应用中的高功率密度设计和(Ii)电力电子产品的日益使用,从而导致加速老龄化问题。教育计划还包括面向K-12年级的学生和代表性不足的群体。由于暴露在新兴的基于宽带隙的电力电子系统产生的高转换速率(从几十到数百千伏/μS)和重复(从数百千赫到兆赫)电压脉冲下,电力系统部件中绝缘系统的加速老化和退化,是接受和使用宽带隙电源模块的最重要障碍之一。这项研究的目的是(1)表征,(2)模型,通过“基于理论的多物理”的方法,和(3)缓解加速老化问题。通过全面的实验研究,将对加速老化问题进行表征,并将使用实验数据来验证所建立的多物理模型。此外,将通过开发和实验验证的模型来确定解决加速老化问题的最佳缓解方法。此外,还将开发旋转机械、变压器、电缆和输电线路的高频电磁暂态模型,以确定(I)过电压、(Ii)电应力和(Iii)不同部件(包括电机和变压器绕组)上的热应力,以及基于宽带隙电压脉冲的电机和电缆端子中的应力分级系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optimal Bipolar MVDC Coaxial Power Cable Design for Envisaged All Electric Wide Body Aircraft
适用于设想的全电动宽体飞机的最佳双极 MVDC 同轴电源线设计
A Review of Insulation Challenges and Mitigation Strategies in (U)WBG Power Modules Packaging
MVDC Bipolar Power Cables with Rectangular Geometry Design for Envisaged All-Electric Wide-Body Aircraft
适用于设想的全电动宽体飞机的具有矩形几何形状设计的 MVDC 双极电力电缆
The Significance of Accurate Needle Electrode Geometry Definitions in Discharge Plasma Finite-Element Simulations: A Comparative Analysis
精确的针电极几何定义在放电等离子体有限元模拟中的意义:比较分析
Characterizing Nonlinear Field Dependent Conductivity Layers to Mitigate Electric Field Within (U)WBG Power Modules Under High Frequency, High Slew Rate Square Voltage Pulses
表征非线性场相关导电层,以减轻高频、高转换率方波电压脉冲下 (U)WBG 电源模块内的电场
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mona Ghassemi其他文献

Effect of Forced Heat Convection on Heat Transfer for Bipolar MVDC Power Cables in Envisaged Wide-Body All-Electric Aircraft
强制热对流对设想的宽体全电动飞机中双极 MVDC 电力电缆传热的影响
A Test System for Transmission Expansion Planning Studies
输电扩建规划研究的测试系统
  • DOI:
    10.3390/electronics13030664
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bhuban Dhamala;Mona Ghassemi
  • 通讯作者:
    Mona Ghassemi
NASA N3-X Aircraft DC Power System Design
NASA N3-X 飞机直流电源系统设计
An Optimal Approach to Fabricate MVDC Multilayer Insulation Systems as Flat Samples for Wide-Body All-Electric Aircraft
制造宽体全电动飞机 MVDC 多层绝缘系统作为平面样品的最佳方法
Influence of Aircraft-Environment Pressure Range on Negative DC Partial Discharge Inception Voltage
飞机环境压力范围对负直流局部放电起始电压的影响

Mona Ghassemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mona Ghassemi', 18)}}的其他基金

Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2306098
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Unconventional High Surge Impedance Loading Transmission Line
非常规高浪涌阻抗负载传输线
  • 批准号:
    2136097
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Accelerated Insulation Aging due to Fast, Repetitive Voltage Pulses from Wide Bandgap Power Electronics
职业:宽带隙电力电子设备快速、重复的电压脉冲导致绝缘老化加速
  • 批准号:
    1942540
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
  • 批准号:
    NE/Y000838/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
  • 批准号:
    EP/Z533038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
  • 批准号:
    DP240101458
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
  • 批准号:
    DE230100754
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了