Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
基本信息
- 批准号:2306204
- 负责人:
- 金额:$ 12.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry is the study of spaces that are locally modeled on phase spaces from classical mechanics. While symplectic manifolds have no local invariants, they do have interesting global ones. A major part of this project is concerned with “Gromov-Witten” invariants, which aim to probe a symplectic manifold by studying maps from two-dimensional surfaces into the manifold that satisfy an appropriate partial differential equation. These invariants are very powerful, but it can be quite difficult to get good control over them because of their non-local nature. One key goal of the project is to prove new fundamental facts about Gromov-Witten invariants on certain symplectic manifolds that are defined by polynomial equations. The general strategy the PI will use is to “cut open” the manifold along a divisor. The corresponding invariants of the divisor complement turn out to be very tractable and also provide a stepping stone towards understanding the Gromov-Witten invariants of the original space. The PI will continue to serve as a mentor to high school students at MIT's Research Science Institute, and will organize a workshop on homological mirror symmetry for graduate students. He will also continue to work on developing a Master’s program in mathematics at the University of Massachusetts Boston. Specifically, in the main strand of the project, the PI will prove that the quantum connection on a Fano manifold with a smooth anti-canonical divisor has a singularity of unramified exponential type. The strategy is to view the quantum cohomology of the Fano manifold as a deformation of the symplectic cohomology of the complement of the divisor. The symplectic cohomology of the complement can in turn be studied via the wrapped Fukaya category, allowing one to bring tools from noncommutative geometry to bear. In a different direction, the PI will build on his previous work to relate the symplectic cohomology of an affine log Calabi-Yau variety to certain intrinsic mirror algebras recently constructed by algebraic geometers. The PI will then go on to study homological mirror symmetry for intrinsic mirror pairs using a combination of symplectic and categorical techniques also developed in previous work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辛几何是研究在经典力学的相空间上局部建模的空间。虽然辛流形没有局部不变量,但它们确实有有趣的全局不变量。该项目的一个主要部分是关于“Gromov-Witten”不变量,其目的是通过研究从二维表面到满足适当偏微分方程的流形的映射来探索辛流形。这些不变量非常强大,但由于它们的非局部性质,很难很好地控制它们。该项目的一个关键目标是证明关于由多项式方程定义的某些辛流形上的Gromov-Witten不变量的新的基本事实。PI将使用的一般策略是沿着沿着除数“切开”流形。相应的除数补的不变量变得非常容易处理,并且也提供了理解原始空间的Gromov-Witten不变量的垫脚石。PI将继续担任麻省理工学院科学研究所高中生的导师,并将为研究生组织一个关于同调镜像对称的研讨会。他还将继续致力于发展数学硕士课程在马萨诸塞州波士顿大学。具体来说,在项目的主线中,PI将证明具有光滑反正则因子的Fano流形上的量子连接具有非分歧指数型奇点。我们的策略是把Fano流形的量子上同调看作是除数的补的辛上同调的变形。补集的辛上同调又可以通过包裹的福谷范畴来研究,这使得人们可以从非交换几何中找到工具。 在不同的方向上,PI将在他之前的工作的基础上,将仿射log Calabi-Yau簇的辛上同调与代数几何学家最近构造的某些内禀镜像代数联系起来。PI将继续研究同调镜像对称性的内在镜像对使用辛和分类技术相结合,也在以前的工作。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Pomerleano其他文献
Affine nil-Hecke algebras and quantum cohomology
仿射零赫克代数和量子上同调
- DOI:
10.1016/j.aim.2023.108867 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
E. Gonz'alez;C. Mak;Daniel Pomerleano - 通讯作者:
Daniel Pomerleano
Global matrix factorizations
全局矩阵分解
- DOI:
10.4310/mrl.2013.v20.n1.a9 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kevin Lin;Daniel Pomerleano - 通讯作者:
Daniel Pomerleano
Cohomological splitting over rationally connected bases
有理连接基上的上同调分裂
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shaoyun Bai;Daniel Pomerleano;Guangbo Xu - 通讯作者:
Guangbo Xu
Curved String Topology and Tangential Fukaya Categories
曲弦拓扑和切向深谷类别
- DOI:
10.1090/pspum/085/1395 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Daniel Pomerleano - 通讯作者:
Daniel Pomerleano
Symplectic cohomology rings of affine varieties in the topological limit
拓扑极限下仿射簇的辛上同调环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Sheel Ganatra;Daniel Pomerleano - 通讯作者:
Daniel Pomerleano
Daniel Pomerleano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Integrability in Gromov--Witten theory
格罗莫夫--维滕理论中的可积性
- 批准号:
22K03265 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectic duality and quantum cohomology
辛对偶性和量子上同调
- 批准号:
569197-2022 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum cluster algebras, quantum cohomology and integrable systems
量子簇代数、量子上同调和可积系统
- 批准号:
2436985 - 财政年份:2020
- 资助金额:
$ 12.34万 - 项目类别:
Studentship
Study of quantum cohomology and periods using tropical geometry
使用热带几何研究量子上同调和周期
- 批准号:
20K03582 - 财政年份:2020
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theoretic enumerative invariants and q-difference equations
K 理论枚举不变量和 q 差分方程
- 批准号:
19F19802 - 财政年份:2019
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The tt* equations: a bridge between the differential geometry of moduli spaces and classical isomonodromy theory
tt* 方程:模空间微分几何与经典等单性理论之间的桥梁
- 批准号:
18H03668 - 财政年份:2018
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)