Acoustic Streaming Flows Induced by Microbubbles in Viscoelastic Fluids: Fundamentals and Applications to Micro-Rheometry

粘弹性流体中微泡引起的声流流动:微流变测量的基础和应用

基本信息

  • 批准号:
    2306901
  • 负责人:
  • 金额:
    $ 32.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Adding minute amounts of polymers into water can turn the solution into a weakly elastic fluid, which exhibit both viscous, liquid-like, and elastic, solid-like behaviors. The elastic behavior is due to stretching and coiling of polymers under flow. Even weak elasticity can have a profound effect on fluid behaviors, which are essential in many industrial applications, ranging from spraying and pesticide deposition to drag reduction in piping flows. To achieve the desired outcomes in those applications, it is critical to accurately measure the fluid viscosity and elasticity. While viscosity is easy to measure, the elasticity of weakly elastic fluids has been challenging to measure. One potential method to measure elasticity is to use steady flows caused by a micro-sized bubble that is vibrating in an acoustic field. The flow patterns that are induced by the bubble will change depending on the acoustic frequency and the fluid properties, allowing inferring of the fluid elasticity. The principal aim of this award is to provide a deep understanding of the key factors governing the microbubble induced flows in a viscoelastic fluid. This award will also incorporate significant educational activities, which disseminate applications of microfluidics as well as concept of viscoelastic fluids through undergraduate research projects, engagement of minority and underrepresented students into research, and outreach modules that are aimed at middle and high school students.Accurate measurement of relaxation times of low-viscosity elastic fluids is still a challenging task. This award will tackle this challenge by using acoustically driven microbubbles. The steady streaming flows arising from the bubble are shown to depend on the driving acoustics and fluid elasticity, suggesting feasible microbubble-based rheometry devices for measuring small relaxation times. In this research, the PIs will combine experiments, simulations, and theoretical modeling to elucidate the interplay between elasticity and acoustic streaming flows by: 1) conducting systematic experiments to characterize the bubble dynamics and streaming flow behavior, 2) deriving appropriate theory based on the asymptotic method to understand the interaction of the fluid elasticity and acoustic oscillations, 3) establishing numerical models to accurately predict the flow patterns, by validating the simulations with the outcome of Task 1, and 4) engineering novel rheometer-on-a-chip devices using the developed models in task 3.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在水中加入微量的聚合物可以使溶液变成弱弹性流体,既表现出粘性的类液体行为,又表现出弹性的类固体行为。弹性行为是由于聚合物在流动状态下拉伸和卷曲造成的。即使是较弱的弹性也会对流体行为产生深远的影响,这在许多工业应用中都是必不可少的,从喷洒和农药沉积到管道流动中的减阻。为了在这些应用中实现预期的结果,准确测量流体的粘度和弹性至关重要。虽然粘度很容易测量,但弱弹性流体的弹性一直很难测量。一种潜在的测量弹性的方法是使用由微小尺寸的气泡在声场中振动引起的稳定流动。由气泡引起的流动模式将根据声波频率和流体性质而改变,从而可以推断流体的弹性。该奖项的主要目的是提供对控制粘弹性流体中微泡诱导流动的关键因素的深入了解。该奖项还将包括重要的教育活动,通过本科生研究项目传播微流体的应用以及粘弹性流体的概念,让少数族裔和代表性不足的学生参与研究,以及针对初中生的推广模块。准确测量低粘度弹性流体的松弛时间仍然是一项具有挑战性的任务。该奖项将通过使用声学驱动的微气泡来应对这一挑战。由气泡产生的稳定流动取决于驱动声学和流体弹性,这表明基于微气泡的流变仪用于测量小松弛时间是可行的。在这项研究中,PI将结合实验、模拟和理论建模来阐明弹性和声流流动之间的相互作用:1)进行系统的实验来表征气泡动力学和流动行为,2)基于渐近方法推导适当的理论来理解流体弹性和声学振荡的相互作用,3)建立数值模型来准确地预测流型,通过验证模拟与任务1的结果,和4)使用任务3中开发的模型设计新型流变仪芯片设备。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joontaek Park其他文献

The shape effect on the retention behaviors of ellipsoidal particles in field-flow fractionation: Theoretical model derivation considering the steric-entropic mode.
场流分级中椭圆体颗粒保留行为的形状效应:考虑空间熵模式的理论模型推导。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    S. Monjezi;Mason Schneier;Jaeyeong Choi;Seungho Lee;Joontaek Park
  • 通讯作者:
    Joontaek Park
A cloud of rigid fibres sedimenting in a viscous fluid
粘性流体中沉积的刚性纤维云
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Joontaek Park;B. Metzger;É. Guazzelli;Jason E. Butler
  • 通讯作者:
    Jason E. Butler
The Effect of Weak Confinement on the Orientation of Nanorods under Shear Flows
弱约束对剪切流下纳米棒取向的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    S. Monjezi;James D. Jones;Alyssa K. Nelson;Joontaek Park
  • 通讯作者:
    Joontaek Park
Spreadsheet-Based Simulator of a Flash Drum: Class Project Example for Material & Energy Balance and Phase Equilibria Courses
基于电子表格的 Flash 鼓模拟器:材料的类项目示例
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joontaek Park;Elizabeth Matejka;Alyssa K. Nelson;J. Rhodes
  • 通讯作者:
    J. Rhodes
Modeling and simulation of biopolymer networks: Classification of the cytoskeleton models according to multiple scales
  • DOI:
    10.1007/s11814-015-0071-5
  • 发表时间:
    2015-05-23
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Nilanjana Banerjee;Joontaek Park
  • 通讯作者:
    Joontaek Park

Joontaek Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Data Structures and Streaming Algorithms
职业:数据结构和流算法
  • 批准号:
    2339942
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Continuing Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
  • 批准号:
    24K14927
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infrastructure of a streaming DAQ for particle experiments
用于粒子实验的流式数据采集基础设施
  • 批准号:
    23H01206
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Auditioning the Sonosphere: Live Audio Streaming as Expanded Geo-Practice
试听 Sonosphere:实时音频流作为扩展的地理实践
  • 批准号:
    2887383
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Studentship
NeTS: Medium: Object-Centric, View-Adaptive and Progressive Coding and Streaming of Point Cloud Video
NeTS:Medium:以对象为中心、视图自适应和渐进式的点云视频编码和流式传输
  • 批准号:
    2312839
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Continuing Grant
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
  • 批准号:
    10601900
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
Learning, Approximating and Minimising Streaming Automata for Large-scale Optimisation
用于大规模优化的学习、逼近和最小化流自动机
  • 批准号:
    EP/T018313/2
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了