Revealing the Physical Drivers of Morphological Evolution with AI/Machine Learning and Rubin Observatory
通过人工智能/机器学习和鲁宾天文台揭示形态进化的物理驱动因素
基本信息
- 批准号:2307158
- 负责人:
- 金额:$ 56.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The hallmark of astronomical surveys over the next decade will be their vastly increased data volumes and complexity. Astronomical discoveries in coming years will rely on the ability of the community to rapidly process, analyze, and understand enormous amounts of information. In this project, scientists at the University of California, Santa Cruz, will apply an Artificial Intelligence/Machine Learning (AI/ML) model called Morpheus to analyze and classify astronomical objects in large-scale, public astronomical imaging surveys. Through the application of AI/ML methods to astronomical data it is possible to enable analyses that are otherwise computationally intractable. By releasing Morpheus as an open framework for other scientists to apply on their own datasets, this research will substantially augment the knowledge of galaxy formation by making probabilistic morphology a feasible measurement for a wide range of extragalactic imaging surveys. Goals of the project include 1) furthering the understanding of the connection between morphology and the physics that govern galaxy formation and 2) lowering the bar for the application of powerful AI//ML methodologies to astronomical datasets. As part of this project, the team will also establish a yearly free workshop for graduate students and postdocs to develop high-quality, transferrable, and extendable professional websites. These activities will increase the visibility of young researchers in astronomy and astrophysics, while providing them with a durable on-line footprint for featuring their professional activities.The proposed research will apply the Morpheus deep learning framework for astronomical data analysis to perform semantic segmentation, source extraction, and morphological classification of galaxies in large scale public survey data. The Morpheus framework leverages AI/ML technology to provide pixel-by-pixel classifications of images, detecting objects, producing corresponding segmentation maps, and then quantifying the model probability that each pixel belongs a class of astronomical object. The team will incorporate Morpheus into the Rubin Science Platform, validate it with a combination of Rubin and space-based data, and apply it to the initial LSST data releases. The team will also use the resulting Morpheus morphologies to investigate the correlations between morphology and other galaxy properties. This project also supports Rubin Observatory science verification activities at UC Santa Cruz.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来十年天文调查的标志将是数据量和复杂性的大幅增加。未来几年的天文发现将依赖于社区快速处理,分析和理解大量信息的能力。在这个项目中,加州大学圣克鲁斯分校的科学家们将应用一种名为Morpheus的人工智能/机器学习(AI/ML)模型来分析和分类大规模公共天文成像调查中的天文物体。通过将AI/ML方法应用于天文数据,可以实现其他计算上难以处理的分析。通过将Morpheus作为一个开放的框架发布,供其他科学家应用于他们自己的数据集,这项研究将通过使概率形态学成为广泛的河外成像调查的可行测量方法,大大增加星系形成的知识。该项目的目标包括:1)进一步理解形态学与控制星系形成的物理学之间的联系; 2)降低将强大的AI//ML方法应用于天文数据集的门槛。作为该项目的一部分,该团队还将为研究生和博士后建立一个年度免费研讨会,以开发高质量,可转移和可扩展的专业网站。这些活动将提高年轻研究人员在天文学和天体物理学领域的知名度,同时为他们提供持久的在线足迹,以展示他们的专业活动。拟议的研究将应用Morpheus深度学习框架进行天文数据分析,以执行大规模公共调查数据中的星系语义分割,源提取和形态分类。Morpheus框架利用AI/ML技术提供图像的逐像素分类,检测对象,生成相应的分割图,然后量化每个像素属于一类天文对象的模型概率。该团队将把Morpheus纳入鲁宾科学平台,用鲁宾和天基数据的组合对其进行验证,并将其应用于最初的LSST数据发布。该团队还将使用由此产生的Morpheus形态来研究形态与其他星系属性之间的相关性。该项目还支持加州大学圣克鲁斯的鲁宾天文台科学验证活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brant Robertson其他文献
Photometric detection at 7.7 μm of a galaxy beyond redshift 14 with JWST/MIRI
使用 JWST/MIRI 在红移大于 14 的星系的 7.7 微米处进行光度检测
- DOI:
10.1038/s41550-025-02503-z - 发表时间:
2025-03-07 - 期刊:
- 影响因子:14.300
- 作者:
Jakob M. Helton;George H. Rieke;Stacey Alberts;Zihao Wu;Daniel J. Eisenstein;Kevin N. Hainline;Stefano Carniani;Zhiyuan Ji;William M. Baker;Rachana Bhatawdekar;Andrew J. Bunker;Phillip A. Cargile;Stéphane Charlot;Jacopo Chevallard;Francesco D’Eugenio;Eiichi Egami;Benjamin D. Johnson;Gareth C. Jones;Jianwei Lyu;Roberto Maiolino;Pablo G. Pérez-González;Marcia J. Rieke;Brant Robertson;Aayush Saxena;Jan Scholtz;Irene Shivaei;Fengwu Sun;Sandro Tacchella;Lily Whitler;Christina C. Williams;Christopher N. A. Willmer;Chris Willott;Joris Witstok;Yongda Zhu - 通讯作者:
Yongda Zhu
MOLECULAR OUTFLOWS IN GALAXY MERGER SIMULATIONS WITH EMBEDDED AGN
嵌入活动星系核的星系合并模拟中的分子外流
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
D. Narayanan;T. J. Cox;Brant Robertson;R. Davé;T. Di Matteo;L. Hernquist;P. Hopkins;C. Kulesa;Christopher K. Walker - 通讯作者:
Christopher K. Walker
A core in a star-forming disc as evidence of inside-out growth in the early Universe
恒星形成盘中的一个核心,作为早期宇宙中由内向外增长的证据
- DOI:
10.1038/s41550-024-02384-8 - 发表时间:
2024-10-11 - 期刊:
- 影响因子:14.300
- 作者:
William M. Baker;Sandro Tacchella;Benjamin D. Johnson;Erica Nelson;Katherine A. Suess;Francesco D’Eugenio;Mirko Curti;Anna de Graaff;Zhiyuan Ji;Roberto Maiolino;Brant Robertson;Jan Scholtz;Stacey Alberts;Santiago Arribas;Kristan Boyett;Andrew J. Bunker;Stefano Carniani;Stephane Charlot;Zuyi Chen;Jacopo Chevallard;Emma Curtis-Lake;A. Lola Danhaive;Christa DeCoursey;Eiichi Egami;Daniel J. Eisenstein;Ryan Endsley;Ryan Hausen;Jakob M. Helton;Nimisha Kumari;Tobias J. Looser;Michael V. Maseda;Dávid Puskás;Marcia Rieke;Lester Sandles;Fengwu Sun;Hannah Übler;Christina C. Williams;Christopher N. A. Willmer;Joris Witstok - 通讯作者:
Joris Witstok
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
红移为 14 的两个发光星系的光谱确认
- DOI:
10.1038/s41586-024-07860-9 - 发表时间:
2024-07-29 - 期刊:
- 影响因子:48.500
- 作者:
Stefano Carniani;Kevin Hainline;Francesco D’Eugenio;Daniel J. Eisenstein;Peter Jakobsen;Joris Witstok;Benjamin D. Johnson;Jacopo Chevallard;Roberto Maiolino;Jakob M. Helton;Chris Willott;Brant Robertson;Stacey Alberts;Santiago Arribas;William M. Baker;Rachana Bhatawdekar;Kristan Boyett;Andrew J. Bunker;Alex J. Cameron;Phillip A. Cargile;Stéphane Charlot;Mirko Curti;Emma Curtis-Lake;Eiichi Egami;Giovanna Giardino;Kate Isaak;Zhiyuan Ji;Gareth C. Jones;Nimisha Kumari;Michael V. Maseda;Eleonora Parlanti;Pablo G. Pérez-González;Tim Rawle;George Rieke;Marcia Rieke;Bruno Rodríguez Del Pino;Aayush Saxena;Jan Scholtz;Renske Smit;Fengwu Sun;Sandro Tacchella;Hannah Übler;Giacomo Venturi;Christina C. Williams;Christopher N. A. Willmer - 通讯作者:
Christopher N. A. Willmer
Brant Robertson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brant Robertson', 18)}}的其他基金
MRI: Acquisition of a High Performance Computer for Computational Science at UC Santa Cruz
MRI:加州大学圣克鲁斯分校购买一台用于计算科学的高性能计算机
- 批准号:
1828315 - 财政年份:2018
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
MRI: Acquisition of a Graphics Processor Unit-Accelerated High Performance Computer for Astrophysics, Computer Science, and Broad Numerical Research at the University of Arizona
MRI:亚利桑那大学购买一台图形处理器加速的高性能计算机,用于天体物理学、计算机科学和广泛的数值研究
- 批准号:
1228509 - 财政年份:2012
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
相似国自然基金
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2419995 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2219107 - 财政年份:2023
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
Ixchel: Building understanding of the physical, cultural and socio-economic drivers of risk for strengthening resilience in the Guatemalan cordillera
伊克切尔:加深对自然、文化和社会经济风险驱动因素的了解,以增强危地马拉山脉的复原力
- 批准号:
NE/T010479/2 - 财政年份:2023
- 资助金额:
$ 56.01万 - 项目类别:
Research Grant
Characterizing the physical drivers of vegetation-forced bar evolution in gravel-bed streams
描述砾石床溪流中植被强迫坝演化的物理驱动因素
- 批准号:
2245496 - 财政年份:2023
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
Beyond safety: Toward comfortable use of mobility scooters through individual fitting based on the physical and cognitive models of drivers
超越安全:通过基于驾驶员的身体和认知模型的个性化适配,实现代步车的舒适使用
- 批准号:
22H03999 - 财政年份:2022
- 资助金额:
$ 56.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identifying the Physical Drivers and Radar Signatures of Fire-Generated Tornadic Vortices
识别火灾产生的龙卷风的物理驱动因素和雷达特征
- 批准号:
2114251 - 财政年份:2021
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
An Unbiased View of the Physical Drivers of Star Formation over Cosmic Time
对宇宙时间恒星形成物理驱动因素的公正看法
- 批准号:
2645826 - 财政年份:2021
- 资助金额:
$ 56.01万 - 项目类别:
Studentship
Ixchel: Building understanding of the physical, cultural and socio-economic drivers of risk for strengthening resilience in the Guatemalan cordillera
伊克切尔:加深对自然、文化和社会经济风险驱动因素的了解,以增强危地马拉山脉的复原力
- 批准号:
NE/T010495/1 - 财政年份:2021
- 资助金额:
$ 56.01万 - 项目类别:
Research Grant
Ixchel: Building understanding of the physical, cultural and socio-economic drivers of risk for strengthening resilience in the Guatemalan cordillera
伊克切尔:加深对自然、文化和社会经济风险驱动因素的了解,以增强危地马拉山脉的复原力
- 批准号:
NE/T010479/1 - 财政年份:2021
- 资助金额:
$ 56.01万 - 项目类别:
Research Grant
Ixchel: Building understanding of the physical, cultural and socio-economic drivers of risk for strengthening resilience in the Guatemalan cordillera
伊克切尔:加深对自然、文化和社会经济风险驱动因素的了解,以增强危地马拉山脉的复原力
- 批准号:
NE/T010460/1 - 财政年份:2020
- 资助金额:
$ 56.01万 - 项目类别:
Research Grant