Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories

向列液晶建模的数学问题:从宏观到微观理论

基本信息

  • 批准号:
    2307525
  • 负责人:
  • 金额:
    $ 20.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Liquid crystals are a special type of soft matter widely used in contemporary technologies including displays, thermometers, optical imaging, and recording, as well as biological systems. The nematic phase is the simplest among all liquid crystal phases. The word nematic comes from Greek, which means thread, due to early experimental observation under microscopes of thread-like discontinuities between neighboring liquid crystal molecules. Physicists have formulated various models at different scales to describe nematic liquid crystals. This project will conduct a rigorous mathematical study of the equations arising from these models, which will provide insight into the underlying nature of these materials and ultimately benefit applications. The project will provide research training opportunities for undergraduate and graduate students.The project is targeted at nonlinear partial differential equations that range from the macroscopic theory to the microscopic theory for nematic liquid crystals. More specifically, the project considers analytic and numerical studies of the physical parameters and their properties in the Beris-Edwards system in macroscopic theory. The project also aims to derive global well-posedness and the phase separation property of a gradient flow generated by a free energy with a potential of singular type, which is considered to be in the intermediate stage of continuum and kinetic theories. Further, the project will explore a kinetic equation in microscopic theory and advance the understanding of its long-time dynamics. The project will utilize and extend mathematical tools from the theory of partial differential equations and calculus of variations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
液晶是一种特殊类型的软物质,广泛应用于当代技术,包括显示器,温度计,光学成像和记录以及生物系统。液晶相是所有液晶相中最简单的。“线”这个词来自希腊语,意思是线,这是由于早期在显微镜下观察到相邻液晶分子之间的线状不连续。物理学家已经在不同的尺度上建立了各种模型来描述液晶。该项目将对这些模型产生的方程进行严格的数学研究,这将深入了解这些材料的基本性质,并最终有利于应用。 该项目将为本科生和研究生提供研究培训机会。该项目的目标是非线性偏微分方程,范围从宏观理论到微观理论的液晶。更具体地说,该项目考虑了宏观理论中Beris-Edwards系统的物理参数及其性质的分析和数值研究。 该项目还旨在推导由具有奇异型势的自由能产生的梯度流的全局适定性和相分离性质,这被认为是在连续介质和动力学理论的中间阶段。此外,该项目将探索微观理论中的动力学方程,并促进对其长期动力学的理解。该项目将利用和扩展偏微分方程理论和变分法的数学工具。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Xu其他文献

Using Integrated Multi-Omics Data Analysis to Identify 5-gene Signature for Predicting Survival of Patients with Hepatocellular Carcinoma
使用集成多组学数据分析识别 5 基因特征来预测肝细胞癌患者的生存
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruling Zhang;Jun;Yingying Zhao;Heng Quan;Dongge Xia;Ziguang Niu;Xiang Xu;Xiaolei Liu;Jun Wu
  • 通讯作者:
    Jun Wu
Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPb-related signaling pathway
甲基苯丙胺暴露通过激活 C/EBPb 相关信号通路触发神经元细胞凋亡和自噬
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Xu;Enping Huang;Baoying Luo;Dunpeng Cai;Xu Zhao;Qin Luo;Yili Jin;Ling Chen;Qi Wang;Chao Liu;Zhoumeng Lin;Wei-Bing Xie;Huijun Wang
  • 通讯作者:
    Huijun Wang
K2Au(IO3)5 and b-KAu(IO3)4: Polar Materials with Strong SHG Responses Originating from Synergistic Effect of AuO4 and IO3 Units
K2Au(IO3)5 和 b-KAu(IO3)4:由于 AuO4 和 IO3 单元的协同效应而具有强 SHG 响应的极性材料
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Xu;Chun-Li Hu;Bing-Xuan Li;Jiang-Gao Mao
  • 通讯作者:
    Jiang-Gao Mao
Towards Bandwidth Guaranteed Virtual Cluster Reallocation in the Cloud
实现云中带宽保证虚拟集群的重新分配
  • DOI:
    10.1093/comjnl/bxx113
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jialei Liu;Shangguang Wang;Ao Zhou;Xiang Xu;Sathish A P Kumar;Fangchun Yang
  • 通讯作者:
    Fangchun Yang
Heterogeneous nuclear ribonucleoprotein A1 exerts protective role in intracerebral hemorrhage-induced secondary brain injury in rats
异质核核糖核蛋白A1在大鼠脑出血所致继发性脑损伤中发挥保护作用
  • DOI:
    10.1016/j.brainresbull.2020.09.023
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiye Zhu;Jiasheng Ding;Liang Sun;Jiang Wu;Xiang Xu;Wenjie Wang;Haiying Li;Haitao Shen;Xiang Li;Zhengquan Yu;Gang Chen
  • 通讯作者:
    Gang Chen

Xiang Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Xu', 18)}}的其他基金

Mathematical Analysis of Topics from Materials Science
材料科学主题的数学分析
  • 批准号:
    2007157
  • 财政年份:
    2020
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant

相似海外基金

Mathematical Problems of Geophysical Fluid Mechanics: Uncertainties, Modeling, Theory, and Computing
地球物理流体力学的数学问题:不确定性、建模、理论和计算
  • 批准号:
    1510249
  • 财政年份:
    2015
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant
Mathematical and computational modeling for problems from biological and industrial applications
生物和工业应用问题的数学和计算建模
  • 批准号:
    216994-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational modeling for problems from biological and industrial applications
生物和工业应用问题的数学和计算建模
  • 批准号:
    216994-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational modeling for problems from biological and industrial applications
生物和工业应用问题的数学和计算建模
  • 批准号:
    216994-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational modeling for problems from biological and industrial applications
生物和工业应用问题的数学和计算建模
  • 批准号:
    216994-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational modeling for problems from biological and industrial applications
生物和工业应用问题的数学和计算建模
  • 批准号:
    216994-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Problems Arising in Aircraft Modeling
飞机建模中出现的数学问题
  • 批准号:
    0072247
  • 财政年份:
    2000
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant
Mathematical Modeling and Computer Simulation of Moving Boundary Problems in Biofluids
生物流体中移动边界问题的数学建模和计算机模拟
  • 批准号:
    9805501
  • 财政年份:
    1998
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant
Mathematical Problems: Mathematical Modeling in Plasma Physics
数学问题:等离子体物理中的数学建模
  • 批准号:
    9404433
  • 财政年份:
    1994
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Statistical Modeling
数学科学:统计建模问题
  • 批准号:
    9306196
  • 财政年份:
    1993
  • 资助金额:
    $ 20.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了