Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
基本信息
- 批准号:2308152
- 负责人:
- 金额:$ 26.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many challenges in remote sensing or other types of signal acquisition and communication systems become feasible when the signal is assumed to be sparse, that is, it can be generated with a small number of contributing terms selected from a dictionary of signal components. This project addresses the need for establishing universal guarantees for sparse recovery of signals that are related to both the mathematical structure of the dictionary as well as the geometric conditions that are used to synthesize the signal. These results will be used for developing requirements and recovery guarantees for accurate machine learning predictions from a sparsely generated signals, detecting emerging hot spots in an epidemic spreading through a network of cities, and detecting symmetries in molecular dynamics to reduce the relevant data when calculating various quantities such as binding energies. The project also involves the training of graduate students in the mathematical, computational, and interdisciplinary aspects of this project. The expected outcomes of the project include the following goals with broad relevance in data science. The first is the accurate recovery of signals that are sparsely synthesized in a finite or infinite-dimensional reproducing kernel space from noisy measurements. Sparse recovery is a central part of support vector regression, which will be carried out for radial Gaussian kernels in high-dimensional spaces. These results from sparse recovery are expected to give insight in the choice of model parameters such as the width of the Gaussian depending on the spacing of the samples. Similar recovery guarantees will also be established for functions on graphs, when the dictionary consists of heat kernels that are indexed by the pair of a vertex and a time for the diffusion of the kernel under the heat semigroup, will also be established. These results have relevance for the detection of hot spots when an infectious disease spreads across the globe, driven by local exponential growth and diffusion between population centers. Another goal is to identify group symmetries from noisy observations of the orbit of a collection of vectors. This question of symmetry identification is motivated by an application in quantum chemistry where identifying symmetries of molecules can reduce the space of samples needed to estimate energies or force fields for molecular configurations based on electron densities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当信号被假设为稀疏时,即,它可以用从信号分量字典中选择的少量贡献项生成时,遥感或其他类型的信号采集和通信系统中的许多挑战变得可行。该项目解决了建立稀疏恢复信号的通用保证的需要,这些信号与字典的数学结构以及用于合成信号的几何条件有关。这些结果将用于开发从稀疏生成的信号进行准确机器学习预测的要求和恢复保证,检测通过城市网络传播的流行病中出现的热点,以及检测分子动力学中的对称性,以减少计算结合能等各种量时的相关数据。该项目还涉及该项目的数学,计算和跨学科方面的研究生培训。 该项目的预期成果包括以下与数据科学广泛相关的目标。第一个是精确恢复的信号,稀疏合成在一个有限或无限维的再生核空间从嘈杂的测量。稀疏恢复是支持向量回归的核心部分,它将在高维空间中对径向高斯核进行。从稀疏恢复的这些结果,预计给洞察模型参数的选择,如高斯的宽度取决于样本的间距。类似的恢复保证也将建立图上的函数,当字典由热核组成时,该热核由一对顶点和热半群下的核的扩散时间索引,也将建立。当传染病在地球仪上传播时,这些结果对于热点的检测具有相关性,这是由当地指数增长和人口中心之间的扩散驱动的。另一个目标是从向量集合的轨道的噪声观测中识别群对称性。这个对称性鉴定问题的动机是在量子化学中的一个应用,在这个应用中,鉴定分子的对称性可以减少根据电子密度估计分子构型的能量或力场所需的样品空间。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernhard Bodmann其他文献
Bernhard Bodmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernhard Bodmann', 18)}}的其他基金
ATD: Pop-Flow: Spatio-Temporal Modeling of Flows in Mobility Networks for Prediction and Anomaly Detection
ATD:Pop-Flow:用于预测和异常检测的移动网络中的流时空建模
- 批准号:
1925352 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Frame Compatibility: Discrete Versus Continuous Redundant Expansions, Strategies for Narrowing the Digital-Analog Gap
框架兼容性:离散扩展与连续冗余扩展、缩小数模差距的策略
- 批准号:
1715735 - 财政年份:2017
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Frame builder: Greedy construction principles for near-optimal signal sparsification, transmission and recovery
框架生成器:用于近乎最优信号稀疏、传输和恢复的贪婪构造原理
- 批准号:
1412524 - 财政年份:2014
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
Frame mechanics: Dynamical principles for optimal redundant expansions
框架力学:最佳冗余扩展的动力学原理
- 批准号:
1109545 - 财政年份:2011
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
相似海外基金
Construction and application of dictionaries for morphological analysis of Japanese dialects
日语方言词形分析词典的构建及应用
- 批准号:
23H00007 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
An Exploration of Wavelet Methods for PDEs: Bases, Dictionaries, and Random Features
偏微分方程小波方法的探索:基础、字典和随机特征
- 批准号:
575023-2022 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
University Undergraduate Student Research Awards
Characterizing the Epidemiology of Cannabidiol (CBD) Use Among US adults
美国成年人中大麻二酚 (CBD) 使用的流行病学特征
- 批准号:
10449896 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
Defining the Chemical Perturbome of Neural Development and Activity
定义神经发育和活动的化学扰动组
- 批准号:
10472146 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
Characterizing the Epidemiology of Cannabidiol (CBD) Use Among US adults
美国成年人中大麻二酚 (CBD) 使用的流行病学特征
- 批准号:
10593083 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
Incorporation of multilevel ontologies of adverse events and vaccines for vaccine safety surveillance
纳入不良事件和疫苗的多级本体以进行疫苗安全监测
- 批准号:
10682792 - 财政年份:2021
- 资助金额:
$ 26.67万 - 项目类别:
The research on all digital image database and glyph systematic description of Yupian system dictionaries
全数字图像数据库及语片系统词典字形系统描述研究
- 批准号:
21K18013 - 财政年份:2021
- 资助金额:
$ 26.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Incorporation of multilevel ontologies of adverse events and vaccines for vaccine safety surveillance
纳入不良事件和疫苗的多级本体以进行疫苗安全监测
- 批准号:
10543179 - 财政年份:2021
- 资助金额:
$ 26.67万 - 项目类别:
Incorporation of multilevel ontologies of adverse events and vaccines for vaccine safety surveillance
纳入不良事件和疫苗的多级本体以进行疫苗安全监测
- 批准号:
10327740 - 财政年份:2021
- 资助金额:
$ 26.67万 - 项目类别:
Collaborative Research: EAGER: VisDict - Visual Dictionaries for Enhancing the Communication between Domain Scientists and Scientific Workflow Providers
协作研究:EAGER:VisDict - 用于增强领域科学家和科学工作流程提供商之间沟通的视觉词典
- 批准号:
2216851 - 财政年份:2021
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant