Spatial Coherence of Light in Collective Spontaneous Emission
集体自发发射中光的空间相干性
基本信息
- 批准号:2308818
- 负责人:
- 金额:$ 43.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The laser, which was invented in 1960, has revolutionized many scientific disciplines and has had a large impact on society. For example, currently, all long-distance communication, including data transfer over the internet, is done using lasers carrying information through optical fibers (thin glass cables). Many remarkable properties of the laser rely on the fact that it is spatially coherent; that is the laser light is made up from a smooth and continuous electromagnetic wave that moves in a predictable way. This property of the laser clearly distinguishes it from other light sources such as lamps and light bulbs. In this project, the research team will investigate a new approach to produce light that has this remarkable coherence property, but instead relies on operational principles that are distinctly different from a laser. The team will use an ensemble of rubidium atoms that are cooled to temperatures that are as low as ten microkelvin. With this ultracold ensemble, the team will investigate the conditions under which the emitted light from the ensemble has this coherence property. The experiments are small-scale table-top experiments, and they will be led by a group of graduate and undergraduate students, who will be trained at the frontiers of quantum science and learn experimental techniques that are widely applicable in optics and quantum computing. The results of the project will be disseminated through public outreach efforts such as Wisconsin Science Festival and UW-Madison Science Expeditions. The new approach for creating coherent light relies on a physical effect referred to as collective spontaneous emission: when an ensemble of excited atoms decay to their ground state collectively. When a quantum system is put into an excited state, it will decay back to the ground state through a process termed spontaneous emission. It is generally assumed that the spontaneous emission from different individual emitters occurs as unrelated events and would not be coherent; to produce coherent light one would need population inversion and stimulated emission. However, the PI’s group has recently experimentally demonstrated spatial coherence of light in collective spontaneous emission; that is, emission between individual atoms at different locations in the ensemble become correlated (phase-coherent) due to collective coupling of the atoms to light. The PI’s group will investigate and further explore the implications of this result in many interrelated areas of atomic, molecular, and optical physics. More specifically, the PIs team will study: (1) the quantum mechanical statistics of the emitted photons in collective spontaneous emission in the large sample, strong excitation regime, (2) the spatio-temporal quantum dynamics of the system in this same regime to gain insight into the spatial structures of superradiant and subradiant modes, and (3) the superradiance-to-subradiance transition, as well as subradiance-only collective decay.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
激光发明于1960年,它使许多科学学科发生了革命性的变化,并对社会产生了巨大影响。例如,目前,所有的长途通信,包括互联网上的数据传输,都是通过光纤(细玻璃电缆)使用激光传输信息。激光的许多显著特性依赖于它的空间相干性;也就是说,激光是由平滑连续的电磁波组成的,电磁波以一种可预测的方式移动。激光的这一特性使它明显区别于其他光源,如灯和灯泡。在这个项目中,研究小组将研究一种产生具有这种显著相干性的光的新方法,但它依赖于与激光截然不同的操作原理。该团队将使用铷原子的集合,这些原子被冷却到低至10微开尔文的温度。有了这个超冷系综,研究小组将研究系综发射的光具有这种相干性的条件。这些实验是小规模的桌面实验,将由一组研究生和本科生领导,他们将在量子科学的前沿接受训练,并学习广泛应用于光学和量子计算的实验技术。该项目的结果将通过公共宣传工作,如威斯康星科学节和威斯康星大学麦迪逊分校科学考察传播。产生相干光的新方法依赖于一种被称为集体自发发射的物理效应:当一群受激发的原子集体衰变到基态时。当一个量子系统被置于激发态时,它将通过一个称为自发发射的过程衰减回基态。一般认为,来自不同个体发射体的自发发射是作为不相关的事件发生的,不会是连贯的;要产生相干光,就需要粒子数反转和受激发射。然而,PI的团队最近通过实验证明了光在集体自发发射中的空间相干性;也就是说,由于原子与光的集体耦合,系综中不同位置的单个原子之间的发射变得相关(相相干)。PI的小组将调查并进一步探索这一结果在原子、分子和光学物理的许多相关领域的含义。更具体地说,pi团队将研究:(1)在大样本、强激发机制下,集体自发发射光子的量子力学统计;(2)在同一机制下,系统的时空量子动力学,以深入了解超辐射和次辐射模式的空间结构;(3)超辐射到次辐射的转变,以及仅次辐射的集体衰变。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deniz Yavuz其他文献
Non-transverse Electromagnetic fields in micro and nano fibers
微米和纳米纤维中的非横向电磁场
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Utku Sağlam;Deniz Yavuz - 通讯作者:
Deniz Yavuz
Broadband spectrum generation using continuous-wave Raman scattering.
使用连续波拉曼散射生成宽带光谱。
- DOI:
10.1364/ol.38.002449 - 发表时间:
2013 - 期刊:
- 影响因子:3.6
- 作者:
Joshua Weber;Deniz Yavuz - 通讯作者:
Deniz Yavuz
Subradiance and superradiance-to-subradiance transition in dilute atomic clouds
稀原子云中的次辐射度和超辐射度到次辐射度的转变
- DOI:
10.1103/physreva.102.043708 - 发表时间:
2020 - 期刊:
- 影响因子:2.9
- 作者:
Diptaranjan Das;B. Lemberger;Deniz Yavuz - 通讯作者:
Deniz Yavuz
Deniz Yavuz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deniz Yavuz', 18)}}的其他基金
Arbitrary Optical Waveform Generation Using Molecular Modulation
使用分子调制生成任意光波形
- 批准号:
1306898 - 财政年份:2013
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant
Arbitrary Optical Waveform Generation Using Molecular Modulation
使用分子调制生成任意光波形
- 批准号:
0855443 - 财政年份:2009
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
相似国自然基金
高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
- 批准号:52368007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
第十届相干散射和相位恢复科学与技术国际会议(Coherence2020)
- 批准号:
- 批准年份:2019
- 资助金额:15 万元
- 项目类别:专项基金项目
相似海外基金
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
A Light Modulator Technology for Spatio-Temporal Coherence Control
一种用于时空相干控制的光调制器技术
- 批准号:
EP/W022567/1 - 财政年份:2022
- 资助金额:
$ 43.34万 - 项目类别:
Research Grant
Shedding light on SBRT: functional optical coherence tomography and MR imaging for in vivo monitoring of high-dose few-fractions radiotherapy of pancreatic cancer
揭示 SBRT:功能性光学相干断层扫描和 MR 成像用于体内监测胰腺癌高剂量少次放疗
- 批准号:
433768 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
Operating Grants
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10426649 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10676879 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
Comb Light Source/Imaging spectrometer for advanced Spectral Domain Optical Coherence Tomography
用于先进谱域光学相干断层扫描的梳状光源/成像光谱仪
- 批准号:
10058117 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10058787 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
Comb Light Source/Imaging spectrometer for advanced Spectral Domain Optical Coherence Tomography
用于先进谱域光学相干断层扫描的梳状光源/成像光谱仪
- 批准号:
10242951 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10212395 - 财政年份:2020
- 资助金额:
$ 43.34万 - 项目类别:
Visible-light optical coherence tomography for clinical glaucoma management
可见光光学相干断层扫描用于临床青光眼治疗
- 批准号:
10484749 - 财政年份:2016
- 资助金额:
$ 43.34万 - 项目类别: