Suprathermal Energization of Particles in the Vicinity of Cusp-like Field Configurations
尖点场结构附近粒子的超热能
基本信息
- 批准号:2308853
- 负责人:
- 金额:$ 48.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will use spacecraft observations, numerical simulations and laboratory experiments to study how solar wind plasma -- the electrons and ions blowing off the surface of the Sun -- interact with the magnetosphere of the Earth. Space is filled with plasma consisting of approximately equal amounts of negatively charged electrons and positively charged ions. Our nearest star, the Sun, ejects large quantities of fast-moving plasma, called the solar wind, toward the Earth. This plasma is relatively cold but is rapidly heated when it encounters magnetized planets. The Earth’s magnetic field partly shields us from the solar wind, but this shield can also break via a mechanism called magnetic reconnection. It is not well understood why the plasma inside the Earth’s magnetic shield, the magnetosphere, is so hot when compared to the solar wind, and this award will enable a collaborative team from Embry-Riddle Aeronautical University and the University of Wisconsin - Madison to help address this question. The project will also contribute to our understanding of space weather and educate, mentor, and support two Ph.D students as well as three scientists from under-represented groups. The universality of particle acceleration, heating and transport in plasmas remains a major challenge in plasma physics, space physics, and astrophysics. In laboratory plasmas, the length-scales are shorter and time-scales are faster than for physical processes in space plasmas, making it a challenge to measure and identify the specific physical mechanisms responsible. In space, the in-situ measurements probe plasmas at their natural scales, but the spatial distribution of probes is very sparse. Recent multi-spacecraft observations and numerical simulations have revealed generation mechanisms of large-scale magnetic bottle structures (diamagnetic cavities) at the Earth’s dayside magnetosphere where thermal particles of tens of eV can be accelerated to suprathermal energies of greater than 40 keV. However, the detailed physics of the particle acceleration has remained elusive. This project will answer the following science questions: (1) What is the detailed physics for electron energization by reconnection (e.g., betatron vs. Fermi) in the environment of a diamagnetic cavity (DMC)?; (2) What is the time-scale of formation of the DMCs in high-Lundquist number plasmas?; (3) How do the electron plasma properties change in the DMC with respect to external electron parameters in high-Lundquist number laboratory plasmas and what controls the fraction of reconnected flux compared to flux convected around the dipole field?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将利用航天器观测、数值模拟和实验室实验,研究太阳风等离子体-从太阳表面吹出的电子和离子-如何与地球磁层相互作用。 空间充满了等离子体,由大约等量的带负电的电子和带正电的离子组成。离我们最近的星星太阳向地球喷射出大量快速移动的等离子体,称为太阳风。这种等离子体相对较冷,但当它遇到磁化行星时会迅速加热。地球的磁场部分地保护我们免受太阳风的影响,但这种保护也可以通过一种称为磁重联的机制打破。目前还不清楚为什么与太阳风相比,地球磁屏蔽层(磁层)内的等离子体如此热,而这个奖项将使安柏瑞德航空大学和威斯康星州-麦迪逊大学的合作团队能够帮助解决这个问题。 该项目还将有助于我们对空间天气的理解,并教育,指导和支持两名博士生以及三名来自代表性不足群体的科学家。等离子体中粒子加速、加热和输运的普遍性仍然是等离子体物理、空间物理和天体物理中的一个主要挑战。 在实验室等离子体中,与空间等离子体中的物理过程相比,长度尺度更短,时间尺度更快,这使得测量和确定具体的物理机制成为一项挑战。在空间中,原位测量探测自然尺度的等离子体,但探测器的空间分布非常稀疏。最近的多航天器观测和数值模拟揭示了大规模的磁瓶结构(抗磁腔)在地球的日侧磁层的热粒子的几十个电子伏可以加速到超热能量大于40千电子伏的生成机制。 然而,粒子加速的详细物理学仍然难以捉摸。 本项目将回答以下科学问题:(1)电子重连的详细物理原理是什么(例如,电子感应加速器与费米)在反磁腔(DMC)环境中的作用?(2)高伦德奎斯特数等离子体中DMC形成的时间尺度是多少?(3)在高伦德奎斯特数的实验室等离子体中,电子等离子体的性质如何在DMC中相对于外部电子参数发生变化,以及与偶极场周围对流的通量相比,是什么控制了重连通量的分数?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuanye Ma其他文献
Plasma transport driven by the Rayleigh‐Taylor instability
瑞利-泰勒不稳定性驱动的等离子体传输
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xuanye Ma;P. Delamere;Antonius Otto - 通讯作者:
Antonius Otto
Quantifying Mass and Magnetic Flux Transport in Saturn's Magnetosphere
量化土星磁层中的质量和磁通量传输
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
B. Neupane;P. Delamere;R. Wilson;Xuanye Ma - 通讯作者:
Xuanye Ma
Plasma Transport Driven by the Three‐Dimensional Kelvin‐Helmholtz Instability
三维开尔文-亥姆霍兹不稳定性驱动的等离子体输运
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xuanye Ma;P. Delamere;A. Otto;B. Burkholder - 通讯作者:
B. Burkholder
Review of paper-based microfluidic analytical devices for in-field testing of pathogens
用于病原体现场检测的纸质微流控分析设备综述
- DOI:
10.1016/j.aca.2023.341614 - 发表时间:
2023-10-16 - 期刊:
- 影响因子:6.000
- 作者:
Wenliang Li;Xuanye Ma;Yang-Chun Yong;Guozhen Liu;Zhugen Yang - 通讯作者:
Zhugen Yang
Flux Tube Entropy and Specific Entropy in Saturn's Magnetosphere
土星磁层中的通量管熵和比熵
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xuanye Ma;P. Delamere;M. Thomsen;A. Otto;B. Neupane;B. Burkholder;K. Nykyri - 通讯作者:
K. Nykyri
Xuanye Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
AGS-PRF: Elucidating the Channels of Energy Transport and Particle Energization in Collisionless Plasmas
AGS-PRF:阐明无碰撞等离子体中能量传输和粒子赋能的通道
- 批准号:
2318252 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别:
Fellowship Award
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
- 批准号:
RGPIN-2018-03988 - 财政年份:2021
- 资助金额:
$ 48.51万 - 项目类别:
Discovery Grants Program - Individual
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
- 批准号:
RGPIN-2018-03988 - 财政年份:2020
- 资助金额:
$ 48.51万 - 项目类别:
Discovery Grants Program - Individual
Heating and Particle Energization in Quasi-Perpendicular Shocks
准垂直冲击中的加热和粒子能量
- 批准号:
2031619 - 财政年份:2020
- 资助金额:
$ 48.51万 - 项目类别:
Standard Grant
Study on oxygen ion energization in the near-Earth magnetotail using multi-spacecraft observations and particle tracing simulation
利用多航天器观测和粒子追踪模拟研究近地磁尾氧离子赋能
- 批准号:
20H01957 - 财政年份:2020
- 资助金额:
$ 48.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Understanding the Role of Inductive Electric Fields in Particle Energization
职业:了解感应电场在粒子能量化中的作用
- 批准号:
1945573 - 财政年份:2020
- 资助金额:
$ 48.51万 - 项目类别:
Continuing Grant
Collaborative Research: Particle Energization in Turbulence and Magnetic Reconnection
合作研究:湍流中的粒子赋能和磁重联
- 批准号:
1842561 - 财政年份:2019
- 资助金额:
$ 48.51万 - 项目类别:
Standard Grant
Collaborative Research: Particle Energization in Turbulence and Magnetic Reconnection
合作研究:湍流中的粒子赋能和磁重联
- 批准号:
1842638 - 财政年份:2019
- 资助金额:
$ 48.51万 - 项目类别:
Standard Grant
Phase Space Studies of Ion Energization in Laboratory Plasmas
实验室等离子体中离子能量的相空间研究
- 批准号:
1902111 - 财政年份:2019
- 资助金额:
$ 48.51万 - 项目类别:
Continuing Grant
Development of an energization-regeneration desiccant air conditioning system using a conductive polymer as new moisture absorbing material
使用导电聚合物作为新型吸湿材料开发通电再生干燥剂空调系统
- 批准号:
19H02294 - 财政年份:2019
- 资助金额:
$ 48.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)