Conference: International conference on Malliavin calculus and related topics
会议:Malliavin 微积分及相关主题国际会议
基本信息
- 批准号:2308890
- 负责人:
- 金额:$ 4.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The International Conference on Malliavin Calculus and Related Topics (ICMC) will be held June 12-16, 2023, at Luxembourg University in Beval, Luxembourg. The Malliavin calculus of variations is a field of mathematical research at the boundary of probability theory, functional analysis and differential geometry. ICMC will bring together mathematicians specializing in the Malliavin calculus and related areas. There will be 20 invited talks by world-class senior researchers, and also talks by junior researchers and a poster session. Funds from the National Science Foundation will support the travel of early-career participants based in the US, who will use this conference as a valuable training and networking opportunity, resulting in potentially major impact on their careers. Conversely, by bringing together leading and emerging scholars in the field, the conference is expected to have an impact on the strength and reach of stochastic analysis, a field of mathematics that is both established and rapidly developing.While Paul Malliavin originally created his calculus at the beginning of the 1970s to study the regularity of solutions of stochastic differential equations, the range of its applications has grown to cover topics as diverse as mathematical physics, stochastic differential geometry, stochastic calculus, density and concentration estimates, rough paths and regularity structures, probabilistic approximations, mathematical finance, and mathematical statistics, to name but a few. Our topics for this conference will mirror this exceptional mathematical diversity of topics, to include stochastic geometry (Gaussian and related processes in hypoelliptic and fractal geometries), stochastic equations driven by Gaussian processes (densities and numerical schemes for equations driven by fractional Brownian motions), stochastic partial differential equations (intermittency and other physical properties), rough paths and regularity structures (KPZ equations, Yang-Mills measures), Malliavin calculus connected to Stein's method (limit theorems, Poisson-Voronoi approximation and Boolean models), and mathematical finance (parametric and non parametric estimation procedures). Additional information may be found on the conference webpage, https://math.uni.lu/icmcrt/index.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Malliavin微积分及相关主题国际会议(ICMC)将于2023年6月12日至16日在卢森堡Beval的卢森堡大学举行。Malliavin变分法是一个数学研究领域,介于概率论、泛函分析和微分几何之间。ICMC将汇集专门从事Malliavin微积分和相关领域的数学家。将有20个世界级高级研究人员的特邀演讲,也有初级研究人员的演讲和海报会议。来自美国国家科学基金会的资金将支持在美国的早期职业参与者的旅行,他们将利用这次会议作为宝贵的培训和交流机会,对他们的职业生涯产生潜在的重大影响。相反,通过汇集该领域的领先和新兴学者,会议预计将对随机分析的强度和范围产生影响,这是一个既成熟又迅速发展的数学领域。虽然Paul Malliavin最初在20世纪70年代初创建了他的微积分,以研究随机微分方程解的规律性,它的应用范围已经扩大到涵盖各种各样的主题,例如数学物理、随机微分几何、随机微积分、密度和浓度估计、粗糙路径和规则性结构、概率近似、数学金融和数理统计,仅举几例。我们这次会议的主题将反映这一特殊的数学主题的多样性,包括随机几何(高斯和相关过程在亚椭圆和分形几何),随机方程驱动的高斯过程(分数布朗运动驱动的方程的密度和数值方案),随机偏微分方程(不透明度和其他物理性质)、粗糙路径和规则性结构(KPZ方程,杨米尔斯措施),Malliavin微积分连接到斯坦的方法(极限定理,Poisson-Voronoi近似和布尔模型)和数学金融(参数和非参数估计程序)。更多信息可以在会议网页上找到,https://math.uni.lu/icmcrt/index.htmlThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samy Tindel其他文献
On ergodic properties of stochastic PDEs
关于随机偏微分方程的遍历性质
- DOI:
10.1007/s40072-025-00365-0 - 发表时间:
2025-05-25 - 期刊:
- 影响因子:1.400
- 作者:
Le Chen;Cheng Ouyang;Samy Tindel;Panqiu Xia - 通讯作者:
Panqiu Xia
A Central Limit Theorem for a Localized Version of the SK Model
- DOI:
10.1007/s11118-007-9041-9 - 发表时间:
2007-02-07 - 期刊:
- 影响因子:0.800
- 作者:
Sérgio de Carvalho Bezerra;Samy Tindel - 通讯作者:
Samy Tindel
Young differential equations with power type nonlinearities
- DOI:
10.1016/j.spa.2017.01.007 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Jorge A. León;David Nualart;Samy Tindel - 通讯作者:
Samy Tindel
The rough path associated to the multidimensional analytic fBm with any Hurst parameter
- DOI:
10.1007/s13348-010-0021-9 - 发表时间:
2010-10-12 - 期刊:
- 影响因子:0.500
- 作者:
Samy Tindel;Jérémie Unterberger - 通讯作者:
Jérémie Unterberger
Quasilinear Stochastic Hyperbolic Differential Equations with Nondecreasing Coefficient
- DOI:
10.1023/a:1008644503806 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.800
- 作者:
David Nualart;Samy Tindel - 通讯作者:
Samy Tindel
Samy Tindel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samy Tindel', 18)}}的其他基金
Continuous Time Reinforcement Learning using Rough Paths
使用粗糙路径的连续时间强化学习
- 批准号:
2153915 - 财政年份:2022
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Applications of Rough Differential Systems: Theoretical Physics, Data Analysis, and Numerics
粗微分系统的应用:理论物理、数据分析和数值
- 批准号:
1952966 - 财政年份:2020
- 资助金额:
$ 4.43万 - 项目类别:
Continuing Grant
On Rough Differential Systems and Stochastic Analysis
粗微分系统与随机分析
- 批准号:
1613163 - 财政年份:2016
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
- 批准号:
2414575 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Conference: International Union of Forest Research Organizations (IUFRO) Tree Biotech 2024
会议:国际林业研究组织联盟 (IUFRO) Tree Biotech 2024
- 批准号:
2420461 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Conference: 10th International Conference on Spectroscopic Ellipsometry
会议:第十届国际椭圆偏振光谱会议
- 批准号:
2423277 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Travel: Student Support for the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2024)
旅行:学生支持第 47 届国际 ACM SIGIR 信息检索研究与发展会议 (SIGIR 2024)
- 批准号:
2409649 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Travel: Student Travel Grant for the 2024 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
旅费:2024 年 ACM SIGMETRICS 国际计算机系统测量和建模会议学生旅费补助
- 批准号:
2412676 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Participant Support for Students to Attend the International Conference and Workshop on Mxenes; Philadelphia, Pennsylvania; 5-7 August 2024
为学生参加 Mxenes 国际会议和研讨会提供支持;
- 批准号:
2416797 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Conference: 2024 International Congress for Neuroethology in Berlin
会议:2024 年柏林国际神经行为学大会
- 批准号:
2345053 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant
Conference: Broadening Participation at the 21st International Symposium on Rice Functional Genomics (ISRFG)
会议:扩大第21届国际水稻功能基因组学研讨会(ISRFG)的参与范围
- 批准号:
2422920 - 财政年份:2024
- 资助金额:
$ 4.43万 - 项目类别:
Standard Grant