Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites

增材制造聚合物复合材料断裂的综合多尺度计算和实验研究

基本信息

  • 批准号:
    2309845
  • 负责人:
  • 金额:
    $ 40.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This project will create new computational capabilities using experimental investigations to understand fracture and failure in 3D printed polymer composites. 3D printing is transitioning from demonstrative prototypes to functional products that impact a wide range of industrial sectors. However, many polymer-based 3D printed parts are prone to fracture and failure. This limits their applications in load-bearing components. Various polymer composite filaments reinforced with particles and/or fibers are being developed to improve the performance of 3D printed components. The current research and development are hindered by the complex variabilities of 3D printing. It thus largely remains in a trial-and-error stage with insufficient scientific guidance. This project will develop a science-based strategy that combines computational modeling and simulations with an optimal suite of experiments. This approach helps to gain a fundamental understanding of multiscale fracture as well as to quantify uncertainties associated with 3D printed polymer composites. The new knowledge achieved through this research can develop new technologies for 3D printing of high-performance components. The outcomes of this research can be applied to a broad array of industries. The research will be complemented by educational and outreach activities. These include curriculum enhancements, hands-on 3D printing workshops, and STEM education programs that engage K-12 and underrepresented minority students.This project will take on the challenges of quantifying the process-structure-property-performance relationship and deriving multiscale fracture mechanics mechanisms for additively manufactured polymer composites. Although additive manufacturing is capable of printing parts with relatively complex geometries, several fundamental issues must be addressed before AM can advance to producing functional composites. Current limitations include microstructural defects due to strong thermal gradients induced during manufacturing, heterogeneous interface bonding conditions, and large fracture and failure performance variations. The research objectives of this project thus include: 1) developing direct mesoscale simulations capable of predicting thermo-mechanical-chemical coupling and fluid-structure interactions during the additive manufacturing process, which will address fundamental questions of how motions and deformations, temperature gradients, melting/solidification between filaments and reinforced particles/fibers interplay with one other in assocoation with micro-crack nucleation and propagation; 2) deriving multiscale modeling of fracture based on machine learning of micro-crack simulations and phase-field models of macro-crack predictions, with in-situ monitoring of manufacturing processes and multiscale experimental characterizations being used for direct model validations; and 3) developing an optimal model-based uncertainty quantification protocol that organizes computational and experimental activities to validate the model, investigate parameter sensitivities, and quantify process/property variations. The research outcomes will advance fundamental knowledge of the complex interplay between additive manufacturing process parameters and fracture behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用实验研究创建新的计算能力,以了解3D印刷聚合物复合材料中的断裂和故障。 3D打印正在从指示性原型过渡到影响广泛工业领域的功能产品。但是,许多基于聚合物的3D印刷零件容易裂缝和故障。这限制了他们在承载组件中的应用。正在开发以颗粒和/或纤维增强的各种聚合物复合丝,以改善3D印刷组件的性能。当前的研究和开发受到3D打印的复杂变化的阻碍。因此,它在很大程度上仍然处于反复试验阶段,科学指导不足。该项目将制定基于科学的策略,该策略将计算建模和模拟与最佳实验套件相结合。这种方法有助于获得对多尺度骨折的基本了解,并量化与3D印刷聚合物复合材料相关的不确定性。通过这项研究获得的新知识可以开发用于3D打印高性能组成部分的新技术。这项研究的结果可以应用于各种各样的行业。这项研究将得到教育和外展活动的补充。其中包括课程增强功能,动手3D打印研讨会以及与K-12和代表性不足的少数族裔学生相关的STEM教育计划。该项目将面临量化过程结构实现性能 - 绩效关系的挑战,并得出多尺度上的裂缝机制,以添加多块裂缝机制。尽管增材制造能够打印具有相对复杂的几何形状的零件,但必须在AM促进生产功能复合材料之前解决一些基本问题。当前的局限性包括由于制造过程中引起的强热梯度,异质界面粘结条件以及较大的断裂和故障性能变化而引起的微观结构缺陷。因此,该项目的研究目标包括:1)开发能够预测添加剂制造过程中能够预测热机械化学耦合和流体结构相互作用的直接介质模拟,这将解决有关运动和变形,温度梯度,温度梯度,融化/凝固的基本问题,与细丝/固化之间的融化/固化与互联网之间的融合/固化与另一种相关的互动, 2)基于机器学习微裂缝模拟和宏观裂缝预测的相位场模型的裂缝模型,并对制造过程的原位监视以及用于直接模型验证的多尺度实验表征; 3)开发一种基于最佳模型的不确定性量化协议,该协议组织了计算和实验活动,以验证模型,研究参数敏感性并量化过程/属性变化。研究成果将促进对添加剂制造过程参数和断裂行为之间复杂相互作用的基本知识。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Li其他文献

In Situ Test and Numerical Analysis of Traffic-Load-Induced Cumulative Settlement of Alluvial Silt After Treatment with Burnt Lime
生石灰处理后冲积粉土交通荷载累积沉降现场试验及数值分析
  • DOI:
    10.1061/(asce)gm.1943-5622.0001571
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Qing Jin;Xin-zhuang Cui;Jun Li;Jun-wei Su;Yi-lin Wang
  • 通讯作者:
    Yi-lin Wang
High-resolution imaging using ultrasound-modulated optical tomography
使用超声调制光学断层扫描进行高分辨率成像
  • DOI:
    10.1117/12.530890
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    8
  • 作者:
    S. Sakadžić;K. Maslov;Jun Li;V. Kinra;Lihong V. Wang
  • 通讯作者:
    Lihong V. Wang
Circulating irisin is lower in gestational diabetes mellitus.
妊娠期糖尿病患者的循环鸢尾素水平较低。
  • DOI:
    10.1507/endocrj.ej15-0230
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Liang Zhao;Jun Li;Z. Li;Jie Yang;Minglong Li;G. Wang
  • 通讯作者:
    G. Wang
From Supramolecular Polymers to Supramolecular Materials
从超分子聚合物到超分子材料
  • DOI:
    10.5650/oleoscience.5.265
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Araki;Jun Li;Isao Yoshikawa
  • 通讯作者:
    Isao Yoshikawa
Real-time 3-dimensional echocardiography for quantification of the difference in left ventricular versus right ventricular stroke volume in a chronic animal model study: Improved results using C-scans for quantifying aortic regurgitation.
实时 3 维超声心动图用于量化慢性动物模型研究中左心室与右心室每搏输出量的差异:使用 C 扫描量化主动脉瓣反流的改进结果。

Jun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Li', 18)}}的其他基金

Discovery Projects - Grant ID: DP210101100
发现项目 - 拨款 ID:DP210101100
  • 批准号:
    ARC : DP210101100
  • 财政年份:
    2021
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Discovery Projects
Explore Electrocatalysis to Improve the Cathode Performance in Li-S Batteries
探索电催化提高锂硫电池正极性能
  • 批准号:
    2054754
  • 财政年份:
    2021
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    2101388
  • 财政年份:
    2020
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
  • 批准号:
    1916239
  • 财政年份:
    2019
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    1910447
  • 财政年份:
    2019
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
A Novel Fuel Cell Catalyst and Support Architecture Based on Edge-site Pyridinic Nitrogen-Doping on Vertically Aligned Conical Carbon Nanofibers
基于垂直排列锥形碳纳米纤维边缘位吡啶氮掺杂的新型燃料电池催化剂和支撑结构
  • 批准号:
    1703263
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
SUSCHEM: Exploring Specific Heating in Microwave-assisted Synthesis of Hierarchical Hybrid Nanomaterials for Future Sustainable Batteries
SUSCHEM:探索微波辅助合成未来可持续电池的分层混合纳米材料中的比热
  • 批准号:
    1707585
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
  • 批准号:
    1742644
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564348
  • 财政年份:
    2016
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
  • 批准号:
    1453287
  • 财政年份:
    2015
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

陶瓷-金属功能梯度复合材料层裂与微层裂行为的多尺度建模与计算研究
  • 批准号:
    12372355
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
刚柔耦合多体系统接触/碰撞/摩擦多尺度动力学快速仿真计算方法
  • 批准号:
    12302042
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于事件相机的地理视频多尺度时空表达与多模态认知计算
  • 批准号:
    42371433
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
不相容微结构的多尺度建模与计算方法研究
  • 批准号:
    12371438
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
半导体器件中缺陷相关可靠性物理的多尺度计算模拟
  • 批准号:
    12334005
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目

相似海外基金

AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
  • 批准号:
    10668829
  • 财政年份:
    2023
  • 资助金额:
    $ 40.53万
  • 项目类别:
Identification and Modeling of Interphase in Cementitious Mixtures through Integrated Experimental-Computational Multiscale Approach
通过综合实验计算多尺度方法识别和建模水泥混合物中的界面
  • 批准号:
    1635055
  • 财政年份:
    2016
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1301048
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1405745
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1301070
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了