Universal Aspects of Quantum Entanglement in Higher Dimensional Disordered Quantum Magnets

高维无序量子磁体中量子纠缠的普遍现象

基本信息

  • 批准号:
    2310706
  • 负责人:
  • 金额:
    $ 33.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Entanglement is a distinguishing property of quantum mechanics, offering fundamentally stronger correlations than classical physics. However, our knowledge remains limited on how strong quantum correlations emerge in interacting quantum systems, especially in higher dimensions. Disordered quantum magnets are not only experimentally relevant, but offer an ideal basis for efficient computational methodologies to measure quantum correlations. The existing, sporadic (and mostly low-dimensional) results indicate surprising, universal laws in how the entanglement of a single subsystem depends on its shape. Moreover, entanglement measures between multiple subsystems were recently found to provide additional universal laws in random quantum systems. Such universal aspects of quantum entanglement are expected to be transformative in pinpointing quantum phase transitions, as well as in understanding the governing universality class. The proposed project aims to achieve an extensive, systematic characterization of the universal aspects of quantum entanglement in a broad class of interacting higher-dimensional quantum systems. The results will provide key insights and methodologies to promote our understanding of entanglement in disordered quantum systems. This project trains graduate and undergraduate students at the interface of physics, information theory, and computer science, preparing a diverse group of independent thinkers for a continuously evolving workforce. Quantum phase transitions are among the fundamental problems of modern physics, the properties of which are studied in solid state physics, quantum field-theory, quantum information and statistical mechanics. Experimental examples in which quantum phase transitions play an important role are, among others, rare-earth magnetic insulators, heavy-fermion compounds, high-temperature superconductors, and two-dimensional electron gases. The proposed research will form the first systematic study of shape-dependent universal aspects of entanglement at the bipartite and multipartite level in interacting higher-dimensional quantum systems. The project will characterize the entanglement entropy of a single extended or skeletal subsystem, as well as the entanglement negativity between two subsystems and the mutual information between two or more subsystems. The focus is on the critical and multicritical points of the paradigmatic random transverse-field Ising model using an efficient implementation of the asymptotically exact strong disorder renormalization group method as well as Monte Carlo simulations. The proposed study will greatly expand the existing literature and provide new insights on universal aspects of quantum entanglement. The obtained results and the developed methodologies are potentially transformative in a broad range of disordered systems, as they provide efficient ways to locate phase transitions and identify universality classes, even without having access to an order parameter.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纠缠是量子力学的一个显著特征,它提供了比经典物理更强的关联性。然而,我们的知识仍然有限,关于相互作用的量子系统中出现多强的量子关联,特别是在更高的维度。无序量子磁铁不仅与实验相关,而且为测量量子关联的有效计算方法提供了理想的基础。现有的零星的(而且大多是低维的)结果表明,单个子系统的纠缠如何依赖于它的形状,是一个令人惊讶的普遍规律。此外,最近发现,多个子系统之间的纠缠测量在随机量子系统中提供了额外的普遍定律。量子纠缠的这些普遍方面有望在准确定位量子相变以及理解支配普适类方面具有变革性。该项目的目的是在一大类相互作用的高维量子系统中实现对量子纠缠普遍方面的广泛、系统的表征。这一结果将为促进我们对无序量子系统中纠缠的理解提供关键的见解和方法。该项目在物理学、信息论和计算机科学的界面上培训研究生和本科生,为不断发展的劳动力培养不同的独立思考者群体。量子相变是现代物理学的基本问题之一,其性质在固体物理学、量子场论、量子信息学和统计力学中都有研究。量子相变起重要作用的实验例子有稀土磁性绝缘体、重费米子化合物、高温超导体和二维电子气。这项拟议的研究将在相互作用的高维量子系统中形成第一个系统地研究相互作用的高维量子系统中两体和多体水平上纠缠的形状相关的普遍方面。该项目将表征单个扩展或骨架子系统的纠缠熵,以及两个子系统之间的纠缠负性和两个或多个子系统之间的互信息。利用渐近精确的强无序重整化群方法和蒙特卡罗模拟,重点研究了聚合随机横场伊辛模型的临界点和多临界点。这项拟议的研究将极大地扩展现有的文献,并为量子纠缠的普遍方面提供新的见解。所获得的结果和开发的方法在广泛的无序系统中具有潜在的变革性,因为它们提供了定位相变和识别普适性类的有效方法,即使不能访问顺序参数。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Istvan Kovacs其他文献

On finite groups with prescribed two-generator subgroups and integral Cayley graphs
关于具有规定的二元子群和积分凯莱图的有限群
  • DOI:
    10.1515/jgth-2020-0094
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Yan-Quan Feng;Istvan Kovacs
  • 通讯作者:
    Istvan Kovacs
On groups all of whose Haar graphs are Cayley graphs
在所有 Haar 图都是 Cayley 图的群上
  • DOI:
    10.1007/s10801-019-00894-7
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Yan-Quan Feng;Istvan Kovacs;Da-Wei Yang
  • 通讯作者:
    Da-Wei Yang
Existence of non-Cayley Haar graphs
非凯莱哈尔图的存在
  • DOI:
    10.1016/j.ejc.2020.103146
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yan-Quan Feng;Istvan Kovacs;Jie Wang;Da-Wei Yang
  • 通讯作者:
    Da-Wei Yang
Quasi-semiregular automorphisms of cubic and tetravalent arc-transitive graphs
立方和四价弧传递图的拟半正则自同构
  • DOI:
    10.1016/j.amc.2019.01.048
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yan-Quan Feng;Ademir Hujdurovic;Istvan Kovacs;Klavdija Kutnar;Dragan Marusic
  • 通讯作者:
    Dragan Marusic
The curved uncut chip thickness model: A general geometric model for mechanistic cutting force predictions
弯曲的未切削切屑厚度模型:用于机械切削力预测的通用几何模型

Istvan Kovacs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Studentship
Topological aspects of quantum scars
量子疤痕的拓扑方面
  • 批准号:
    2892181
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Studentship
Universal aspects of quantum dynamics from the viewpoint of quantum information and surface-roughness growth
从量子信息和表面粗糙度增长的角度看量子动力学的普遍方面
  • 批准号:
    23K13029
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum aspects of black holes from low-dimensional quantum gravity models
低维量子引力模型中黑洞的量子方面
  • 批准号:
    23K13105
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultrafast Quantum Photonics: From Fundamental Aspects to High-Tech Applications
超快量子光子学:从基础方面到高科技应用
  • 批准号:
    RGPIN-2017-06894
  • 财政年份:
    2022
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Discovery Grants Program - Individual
Universal aspects of quantum dynamics: quantum catastrophes and long-range interactions
量子动力学的普遍方面:量子灾难和长程相互作用
  • 批准号:
    RGPIN-2017-06605
  • 财政年份:
    2022
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Discovery Grants Program - Individual
Phenomenological and Theoretical Aspects of Quantum Gravity
量子引力的现象学和理论方面
  • 批准号:
    RGPIN-2019-05404
  • 财政年份:
    2022
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Quantum Photonics: From Fundamental Aspects to High-Tech Applications
超快量子光子学:从基础方面到高科技应用
  • 批准号:
    RGPIN-2017-06894
  • 财政年份:
    2021
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Discovery Grants Program - Individual
Phenomenological and Theoretical Aspects of Quantum Gravity
量子引力的现象学和理论方面
  • 批准号:
    RGPIN-2019-05404
  • 财政年份:
    2021
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Discovery Grants Program - Individual
Dark Matter: Fundamental Processes and Quantum Information Aspects
暗物质:基本过程和量子信息方面
  • 批准号:
    2111743
  • 财政年份:
    2021
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了