CAREER: Automated Synthesis of Compound Machines Using Computational Design Optimization

职业:使用计算设计优化自动合成复合机器

基本信息

  • 批准号:
    2311078
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Computer algorithms have been used to automatically generate and optimize designs for everything from aircraft wing structures to cardiovascular stents. However, these algorithms are typically limited to the design of single-body structures, with all motion occurring by means of structural deformation. This limits the complexity of the designs that can be synthesized, preventing the design of multi-body systems containing several moving parts. This Faculty Early Career Development Program (CAREER) project will advance the science of automated computational design by creating new algorithms capable of generating and optimizing multi-body systems. Starting with only a mathematical description of design materials and physical environment, the algorithms will automatically generate assemblies for compound machines that combine multiple basic components such as levers, hinges, wheels, and axles, which together form the foundation of all mechanical design. This work will enable a new level of automated computational design not previously possible under existing design frameworks. The knowledge obtained from this research will benefit a wide range of applications including nanoscale mechanisms for delivery of medications and self-reproducing robotic systems. The project also involves an integrated education program featuring a STEM Pipeline program for undergraduate students from underrepresented minority groups. The program includes bi-weekly labs and seminars, team design projects, and K-12 outreach activities. The algorithms created in this project will rely upon several novel design formulations devised specifically for the design task. Chief among these will be an original topology optimization-type framework in which the internal topologies of multiple planar design domains are optimized simultaneously, while also optimizing the connectivity between adjacent domains to form compound mechanisms whose components can slide and rotate freely with respect to one another. The mechanical behavior of the designs will be modeled using a combination of finite element analysis and flexible multibody dynamics to capture the rigid body motion and the elastic deflection of the system components. Additionally, adjoint sensitivity analysis will be used to derive and compute the design sensitivities that will power the gradient-based optimization algorithms. The new design framework will be validated via high-fidelity computational simulations, as well as through fabrication and experimental testing. This testing will be used to quantify the efficiency of the generated designs, as determined by their mechanical and geometric advantage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机算法已被用于自动生成和优化设计,从飞机机翼结构到心血管支架。然而,这些算法通常局限于单体结构的设计,所有的运动都是通过结构变形发生的。这限制了可以综合的设计的复杂性,阻止了包含多个运动部件的多体系统的设计。该学院早期职业发展计划(Career)项目将通过创建能够生成和优化多体系统的新算法来推进自动化计算设计科学。从设计材料和物理环境的数学描述开始,算法将自动生成组合机器的组件,这些组件结合了杠杆、铰链、车轮和轴等多个基本组件,这些组件共同构成了所有机械设计的基础。这项工作将使自动化计算设计达到一个新的水平,这在现有的设计框架下是不可能的。从这项研究中获得的知识将有利于广泛的应用,包括纳米级药物输送机制和自我复制机器人系统。该项目还包括一个综合教育计划,其中包括一个STEM管道计划,面向来自代表性不足的少数群体的本科生。该项目包括每两周一次的实验室和研讨会、团队设计项目和K-12外展活动。在这个项目中创建的算法将依赖于几个专门为设计任务设计的新颖设计公式。其中最主要的将是一个原始拓扑优化型框架,其中多个平面设计域的内部拓扑同时优化,同时还优化相邻域之间的连通性,形成复合机构,其组件可以相互自由滑动和旋转。设计的机械行为将使用有限元分析和柔性多体动力学相结合来建模,以捕获刚体运动和系统组件的弹性挠度。此外,伴随灵敏度分析将用于推导和计算设计灵敏度,这将为基于梯度的优化算法提供动力。新的设计框架将通过高保真计算模拟以及制造和实验测试进行验证。该测试将用于量化生成设计的效率,由其机械和几何优势决定。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai James其他文献

A systematic investigation of interior point methods for aerodynamic shape optimization
一种用于空气动力学外形优化的内点法的系统研究
  • DOI:
    10.1016/j.ast.2025.110302
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Prateek Ranjan;Wanzheng Zheng;Kai James
  • 通讯作者:
    Kai James

Kai James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai James', 18)}}的其他基金

CAREER: Automated Synthesis of Compound Machines Using Computational Design Optimization
职业:使用计算设计优化自动合成复合机器
  • 批准号:
    1752054
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Novel Topology Optimization Methods for Designing Multifunctional Heterogeneous Material Systems
用于设计多功能异质材料系统的新颖拓扑优化方法
  • 批准号:
    1663566
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Advanced Materials from Automated Synthesis of Sequence-Defined Polymers
序列定义聚合物自动合成的先进材料
  • 批准号:
    DP230101739
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
  • 批准号:
    2894726
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
eSynthesis - an automated platform technology for rapid, high-throughput and clonal cell-free synthetic DNA synthesis
eSynthesis - 一种自动化平台技术,用于快速、高通量和克隆无细胞合成 DNA 合成
  • 批准号:
    10075886
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant for R&D
I-Corps: Automated Nanoparticle Synthesis
I-Corps:自动化纳米粒子合成
  • 批准号:
    2330079
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Automated Verification and Synthesis of Input Generators in Property-Based Testing Frameworks
SHF:小型:基于属性的测试框架中输入生成器的自动验证和合成
  • 批准号:
    2321680
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Inert Atmosphere Automated Synthesis for the Investigation of Nuclear Waste relevant species (DIGINERT)
用于核废料相关物种研究的惰性气氛自动合成 (DIGINERT)
  • 批准号:
    EP/W02702X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Development of SN2-type Glycosylation for Automated Glycan Synthesis
用于自动化聚糖合成的 SN2 型糖基化的开发
  • 批准号:
    2247934
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Automated Smart Contract Synthesis and Verification for Distributed Ledger Blockchain Technology
分布式账本区块链技术的自动化智能合约合成和验证
  • 批准号:
    RGPIN-2019-04354
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Automated chemo-enzymatic synthesis of N-glycans for host-pathogen interactions
用于宿主-病原体相互作用的 N-聚糖自动化学酶合成
  • 批准号:
    10626153
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了