Collaborative Research: Design, Modeling and Active Learning of Quantitative-Sequence Experiments

协作研究:定量序列实验的设计、建模和主动学习

基本信息

  • 批准号:
    2311186
  • 负责人:
  • 金额:
    $ 21.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

A new type of experiment concerning both quantitative and sequence (QS) factors has recently drawn great attention in science and engineering applications. In chemotherapy, to develop efficient drug combinations involving several drug components, researchers need to conduct experiments optimizing both the doses and the sequence orders of drug components. Such a problem raises new challenges for statisticians since the input space is semi-discrete and grows exponentially with the number of drugs. Researchers rely more than ever on statistical modeling and active learning to identify optimal settings given limited experimental resources. Additionally, QS experiments often have specific requirements. In the computer experiment for metal additive manufacturing processes, the output response is binary (success/failure), and it requires both interpolation and uncertainty quantification, which is an unsolved problem in the current literature. In this project, the investigators will provide systematic solutions to QS experiments, addressing challenges in design, modeling, uncertainty quantification, and active learning. The outcome of this project will help save experimental costs in applications involving QS factors. The applications to chemotherapy will help advance cancer research in the U.S., while the applications to manufacturing processes will enhance the industrial competitiveness of the U.S. Also, this project provides research training opportunities for graduate students. Active learning in experiments, aka reinforcement learning under the broad context of machine learning, allocates runs in an adaptive manner, which is generally more efficient than one-shot experiments for optimizing the experimental settings. This project will establish new Gaussian process-based models for physical experiments with QS factors, based on which new active learning procedures will be developed. For analyzing computer experiments, a novel Hopfield process (HP) framework will be established as an accurate surrogate for interpolating binary (and categorical) outputs, which will facilitate uncertainty quantification and active learning. Optimal QS experimental designs will also be constructed by combing several Williams-transformed good lattice point sets, which possess desirable properties including space-filling, orthogonality, and paired balance. This research project will provide systematic solutions for various types of QS experiments that are of interest in scientific research and industrial applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,一种新型的定量因子和序列因子实验在科学和工程应用中引起了极大的关注。在化疗中,为了开发涉及多种药物成分的有效药物组合,研究人员需要进行优化药物成分剂量和顺序的实验。这一问题给统计学家提出了新的挑战,因为输入空间是半离散的,并且随着药物数量呈指数级增长。研究人员比以往任何时候都更依赖于统计建模和主动学习,以确定有限的实验资源的最佳设置。此外,QS实验通常有特定的要求。在金属增材制造过程的计算机实验中,输出响应是二元的(成功/失败),并且它需要插值和不确定性量化,这是当前文献中未解决的问题。在这个项目中,研究人员将为QS实验提供系统的解决方案,解决设计,建模,不确定性量化和主动学习方面的挑战。该项目的成果将有助于节省涉及QS因子的应用中的实验成本。在化疗中的应用将有助于推进美国的癌症研究,而在制造过程中的应用将提高美国的工业竞争力。此外,该项目还为研究生提供了研究培训的机会。实验中的主动学习,也就是在机器学习的广泛背景下的强化学习,以自适应的方式分配运行,这通常比一次性实验更有效地优化实验设置。本计画将建立以高斯过程为基础的QS因子物理实验新模式,并在此基础上开发新的主动学习程序。为了分析计算机实验,将建立一个新的Hopfield过程(HP)框架作为插值二进制(和分类)输出的准确替代,这将有助于不确定性量化和主动学习。最优QS实验设计也将通过组合几个Williams变换的好格点集来构造,这些格点集具有理想的性质,包括空间填充,正交性和配对平衡。该研究项目将为科学研究和工业应用中感兴趣的各种类型的QS实验提供系统的解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

QIAN XIAO其他文献

A remarkable new species of Nemoura (Plecoptera: Nemouridae) from Chuxiong Yi Autonomous Prefecture of Yunnan Province, China
  • DOI:
    https://doi.org/10.11646/zootaxa.4375.2.8
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    YU-HAN QIAN;QIAN XIAO;ZHI-TENG CHEN;YU-ZHOU DU
  • 通讯作者:
    YU-ZHOU DU
Two new species of Mesonemoura (Plecoptera: Nemouridae) from Yunnan Province of China
中国云南省Mesonemoura二新种(翅翅目:Nemouridae)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    QIAN XIAO;JING ZHAO;YU-HAN QIAN;YU-ZHOU DU
  • 通讯作者:
    YU-ZHOU DU
A remarkable new species of Nemoura (Plecoptera: Nemouridae) from Chuxiong Yi Autonomous Prefecture of Yunnan Province, China
中国云南省楚雄彝族自治州的Nemoura一新种(Plecoptera:Nemouridae)
  • DOI:
    10.11646/zootaxa.4375.2.8
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    YU-HAN QIAN;QIAN XIAO;ZHI-TENG CHEN;YU-ZHOU DU
  • 通讯作者:
    YU-ZHOU DU

QIAN XIAO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321297
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了