Collaborative Research: Aggregation and Electrification in a Laboratory-scale Volcanic Plume

合作研究:实验室规模火山羽流中的聚集和带电

基本信息

  • 批准号:
    2311330
  • 负责人:
  • 金额:
    $ 31.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Explosive volcanic eruptions have significant impacts on air traffic, infrastructure, human health, and global climate. These events are a challenge to monitor due to hazardous conditions, uncertainty in eruption timing, and remote eruption locations. Hazard mitigation requires (1) remote detection of eruption conditions and (2) an understanding of the ash distribution above the volcano, which can then disperse across the upper atmosphere. This study will address both critical issues by exploring the link between turbulence, ash particle dynamics, and electrification. Following an eruption, volcanic ash particles encounter turbulence, which can promote particle interaction, electric charging, and clustering. Electrified plumes can trigger volcanic lightning, a spectacular phenomenon that may be used to study hazardous eruptions in near real-time. These discharges generate broadband radiation (e.g. radio waves) that can carry information about the interior of the flow far beyond the immediate vicinity of the volcano. Electrical forces can also cause clustered particles to combine, accelerating their fall back to the ground. In addition, particle aggregation is strongly influenced by moisture in the plume and the atmosphere. These processes are critical to the hazards of volcanic ash, yet they are challenging to model. The effects of turbulence, aggregation, and electrification are closely linked, but their interactions have never been experimentally quantified. Hence, there is a need for improved measurements of these effects, which can be used to create accurate models of volcanic ash transport. This project will enhance the education of three graduate students through participation in these experiments and through scientific communication training through which they will develop hands-on demonstrations for public outreach. This project aims to develop improved predictions of volcanic plume behavior through high-accuracy experiments and advanced computational models. The research team will conduct experimental measurements of turbulent jets filled with particles, examining both aggregation and electric fields. High-resolution optical techniques will study turbulence and clustering in the particle mixtures, both with and without moisture. Electrical sensors will measure particle charging, and the measurements will be linked to models of the eruption conditions. The results will be integrated into a computational model, which can be used to examine volcanic plume conditions remotely. In addition, the research will be presented to the public through a series of hands-on demonstrations at the Oregon Museum of Science and Industry (OMSI) and the Smithsonian Institution. This project was supported by both the Geophysics and the Petrology and Geochemistry programs. This project is jointly funded by the Geophysics Program, Petrology and Geochemistry Program, and the Division of Earth Sciences to support projects that increase research capabilities, capacity and infrastructure at a wide variety of institution types, as outlined in the GEO EMBRACE DCL.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
爆炸性火山喷发对空中交通,基础设施,人类健康和全球气候产生重大影响。 这些事件是由于危险条件,喷发时机的不确定性和远程喷发位置而进行监测的挑战。 缓解危险需要(1)远程检测喷发条件,以及(2)对火山上方的灰分分布的理解,然后可以在高层大气中分散。 这项研究将通过探索湍流,灰分颗粒动力学和电化之间的联系来解决这两个关键问题。 喷发后,火山灰颗粒会遇到湍流,这可以促进颗粒相互作用,电荷和聚类。 电动羽流可以触发火山闪电,这是一种壮观的现象,可用于几乎实时研究危险喷发。 这些放电产生的宽带辐射(例如无线电波)可以携带有关流量内部远远超出火山附近的信息的信息。 电力还会导致聚集的颗粒组合,从而加速其落在地面上。 另外,颗粒聚集受羽流和大气中的水分的强烈影响。 这些过程对于火山灰的危害至关重要,但它们对模型构成挑战。 湍流,聚集和电化的影响紧密相连,但它们的相互作用从未经过实验量化。 因此,需要改进这些效果的测量,可用于创建精确的火山灰运输模型。该项目将通过参与这些实验以及科学的沟通培训来增强三名研究生的教育,通过这些实验,他们将开展实践示范以供公众推广。该项目旨在通过高临界实验和先进的计算模型来改进火山羽流行为的预测。 研究团队将对充满颗粒的湍流喷气机进行实验测量,以检查聚合和电场。 高分辨率光学技术将研究有或没有水分的颗粒混合物中的湍流和聚类。 电气传感器将测量颗粒充电,测量结果将与喷发条件的模型相关联。 结果将集成到计算模型中,该模型可用于远程检查火山羽状条件。 此外,该研究将通过俄勒冈州科学与工业博物馆(OMSI)和史密森尼机构的一系列动手演示向公众展示。该项目得到了地球物理和岩石学和地球化学计划的支持。该项目由地球物理学计划,岩石学和地球化学计划以及地球科学部门共同资助,以支持各种机构类型的研究能力,能力,能力和基础设施的项目,如Geo Abrace DCL中所述,这些奖项反映了NSF的法定任务,并通过评估了基础,这表明了NSF的法规审查的范围,这表明了范围的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Solovitz其他文献

Stephen Solovitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Solovitz', 18)}}的其他基金

Collaborative Research: Measurement of Particle Aggregation in Laboratory-scale Flows for Improved Models of Volcanic Ash Fallout and Entrainment
合作研究:测量实验室规模流动中的颗粒聚集,以改进火山灰沉降和夹带模型
  • 批准号:
    1756267
  • 财政年份:
    2018
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Measurement and Modeling of Air Entrainment and Ash Distribution in Weak Volcanic Plumes
合作研究:弱火山羽流中空气夹带和灰分分布的测量和建模
  • 批准号:
    1346580
  • 财政年份:
    2014
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Continuing Grant

相似国自然基金

拟南芥ROP1和formin协作调控花粉管顶端微丝聚合的作用机制研究
  • 批准号:
    32270338
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
拟南芥ROP1和formin协作调控花粉管顶端微丝聚合的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于自组织聚合网络的电动汽车充电协作机制与时空响应优化方法研究
  • 批准号:
    52107100
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于自组织聚合网络的电动汽车充电协作机制与时空响应优化方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态演化超网络的制造资源服务聚合模式与容错调度机制研究
  • 批准号:
    51705014
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 31.29万
  • 项目类别:
Collaborative Research: Aggregation and Electrification in a Laboratory-scale Volcanic Plume
合作研究:实验室规模火山羽流中的聚集和带电
  • 批准号:
    2311331
  • 财政年份:
    2023
  • 资助金额:
    $ 31.29万
  • 项目类别:
    Standard Grant
Asian Community-Led Health Equity Structural Intervention (Asian CHESI)
亚洲社区主导的健康公平结构干预(亚洲 CHESI)
  • 批准号:
    10778519
  • 财政年份:
    2023
  • 资助金额:
    $ 31.29万
  • 项目类别:
The Anti-Autophagy Arsenal of Legionella pneumophila
嗜肺军团菌的抗自噬阿森纳
  • 批准号:
    10679185
  • 财政年份:
    2023
  • 资助金额:
    $ 31.29万
  • 项目类别:
In vivo mechanisms of amyloid-induced pancreatic islet dysfunction in type 2 diabetes
淀粉样蛋白诱导的 2 型糖尿病胰岛功能障碍的体内机制
  • 批准号:
    10588374
  • 财政年份:
    2023
  • 资助金额:
    $ 31.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了