Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations

元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用

基本信息

  • 批准号:
    2311372
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Massive increases in computing capabilities are increasing the data volume generated in numerical simulations, while data storage and transfer capabilities are not growing at the same pace. This is especially true for all-atom molecular dynamics (MD) simulations that are used to study the function of biomolecules and novel materials on timescales of microseconds in systems containing hundreds of thousands to millions of atoms. Such simulations evaluate atom positions and velocities for 109 distinct times, which corresponds to 2 petabytes of data and exceeds reasonable data storage and transfer capacities. As a result, simulation data is stored only at coarse time intervals even though this approach loses information on fast molecular processes that is essential to computing many experimental observables. The software infrastructure created in this project avoids such information loss in molecular dynamics simulations via convergence of data generation and analysis. Instead of storing data for post-processing (status quo), it is passed directly to a parallel software platform via a streaming protocol. The implementation of the streaming protocol into existing software packages with a large user base allows for a direct integration into established simulation protocols. As a result, molecular dynamics simulations produce more usable information, and associated computational resources are used more efficiently.The streaming protocol for MD simulations uses a TCP/IP socket application programming interface (API) to transfer data directly from a running simulation to the analysis software. This approach enables the simultaneous analysis of fast (sub-picosecond) and slow (microsecond) processes in molecular simulations without creating bottlenecks or requiring massive trajectory output files. The analysis is performed with the open-source MDAnalysis platform for which tools are implemented as MDAKit plugins that significantly benefit from the streaming interface, such as 3D-2PT (spatially resolved two-phase thermodynamics) and related tools for the analysis of spatially resolved protein solvation maps.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Division of Chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算能力的大规模增长正在增加数值模拟中生成的数据量,而数据存储和传输能力却没有以同样的速度增长。这对于全原子分子动力学(MD)模拟尤其如此,该模拟用于在包含数十万至数百万个原子的系统中研究生物分子和新材料在微秒时间尺度上的功能。这种模拟评估了109个不同时间的原子位置和速度,这相当于2 PB的数据,超过了合理的数据存储和传输能力。因此,模拟数据仅以粗略的时间间隔存储,即使这种方法丢失了对计算许多实验观测值至关重要的快速分子过程的信息。该项目中创建的软件基础设施通过数据生成和分析的融合避免了分子动力学模拟中的此类信息丢失。它不是存储数据进行后处理(现状),而是通过流协议直接传递到并行软件平台。将流协议实施到具有大用户群的现有软件包中允许直接集成到已建立的模拟协议中。因此,分子动力学模拟产生更多的可用信息,并更有效地利用相关的计算资源。MD模拟的流协议使用TCP/IP套接字应用程序编程接口(API)将数据直接从运行的模拟传输到分析软件。这种方法可以在分子模拟中同时分析快速(亚皮秒)和慢速(微秒)过程,而不会产生瓶颈或需要大量的轨迹输出文件。分析是用开源MDAnalysis平台执行的,该平台的工具被实现为MDAkit插件,这些插件从流接口中受益匪浅,例如3D-2 PT(空间分辨两相热力学)和相关工具的空间分辨蛋白质溶剂化图的分析。这个奖项由NSF高级网络基础设施办公室联合支持的化学部。这个奖项反映了NSF的法定基金会的使命是履行其使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评价,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Heyden其他文献

Characterization of Collective Protein-Water-Membrane Dynamics
  • DOI:
    10.1016/j.bpj.2017.11.1350
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Paeslack;Lars Schaefer;Matthias Heyden
  • 通讯作者:
    Matthias Heyden
Protein-Water and Solvent-Mediated Interactions in Multi-Scale Simulations
  • DOI:
    10.1016/j.bpj.2018.11.797
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Matthias Heyden
  • 通讯作者:
    Matthias Heyden
Predicting conformational transitions along highly anharmonic vibrational modes
  • DOI:
    10.1016/j.bpj.2023.11.214
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Souvik Mondal;Michael Sauer;Matthias Heyden
  • 通讯作者:
    Matthias Heyden
Linear and Nonlinear Dielectric Response of Intrinsically Disordered Proteins.
本质无序蛋白质的线性和非线性介电响应。
  • DOI:
    10.1021/acs.jpclett.4c00866
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael A Sauer;Taylor Colburn;Sthitadhi Maiti;Matthias Heyden;D. Matyushov
  • 通讯作者:
    D. Matyushov
Das Innere der Zelle: Ein komplexes Lösungsmittel
Das Innere der Zelle: Ein koplexes Lösungsmittel
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias Heyden;Simon Ebbinghaus;R. Winter
  • 通讯作者:
    R. Winter

Matthias Heyden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Heyden', 18)}}的其他基金

From Protein Structure Predictions to Dynamics
从蛋白质结构预测到动力学
  • 批准号:
    2154834
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Data Structures and Streaming Algorithms
职业:数据结构和流算法
  • 批准号:
    2339942
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
  • 批准号:
    24K14927
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infrastructure of a streaming DAQ for particle experiments
用于粒子实验的流式数据采集基础设施
  • 批准号:
    23H01206
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Auditioning the Sonosphere: Live Audio Streaming as Expanded Geo-Practice
试听 Sonosphere:实时音频流作为扩展的地理实践
  • 批准号:
    2887383
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Studentship
NeTS: Medium: Object-Centric, View-Adaptive and Progressive Coding and Streaming of Point Cloud Video
NeTS:Medium:以对象为中心、视图自适应和渐进式的点云视频编码和流式传输
  • 批准号:
    2312839
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
  • 批准号:
    10601900
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
Learning, Approximating and Minimising Streaming Automata for Large-scale Optimisation
用于大规模优化的学习、逼近和最小化流自动机
  • 批准号:
    EP/T018313/2
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了