Collaborative Research: Elements: Building an open source DFT+eDMFT database for quantum materials

合作研究:Elements:为量子材料构建开源 DFT eDMFT 数据库

基本信息

项目摘要

The discovery of new quantum materials plays a crucial role in technological advancements. The use of data science tools, coupled with artificial intelligence (AI), has the potential to greatly accelerate materials discovery. However, the effectiveness of these tools relies on having large, high-quality material databases. Unfortunately, many existing databases built over the past decade have been inadequate in accurately predicting the properties of quantum materials. Quantum materials exhibit highly correlated quantum mechanical phenomena at the atomic scale, which manifest socially useful properties like magnetism and superconductivity at the macroscopic scale. This project aims to develop an open-source, high-fidelity materials database by implementing high-throughput algorithms using modern quantum many-body methods, which have not yet been employed for large-scale database creation. Additionally, the project enhances existing large-scale materials databases using AI tools. To ensure accessibility, this project will make the infrastructures and tutorials for these databases freely available to the scientific community. Important materials databases include exclusively physical property data created from Density Functional Theory (DFT) engines which describe the physical properties of simple materials in terms of independent electrons in the presence of an average potential. For strongly correlated quantum materials, which cannot be treated in this averaged manner, DFT often fails to predict correct physical properties, while the Dynamical Mean Field Theory (DMFT) approach allows far more accurate calculations of the same properties at a higher but still practical cost. To overcome the DFT-based shortcomings of existing materials databases and to transform data-science-driven materials discovery into a new era, the team aims to build an open-source high-fidelity database of quantum materials properties in which the DFT engine is replaced by the more precise many-body method based on a combination of DFT and DMFT (DFT+DMFT), through the development of a new high-throughput DFT+DMFT workflow. This high-fidelity but the smaller database will be used to correct the existing large-scale DFT databases using artificial intelligence tools, such as transfer learning, allowing the automatic repair of the systematic errors in the less accurate DFT data once the high-fidelity data in a smaller domain is known. This research also aims to expand the knowledge and skills of students in quantum theory, AI careers, and interdisciplinary fields that bridge materials and data science.This project is jointly funded by the NSF Office of Advanced Cyberinfrastructure, the Established Program to Stimulate Competitive Research (EPSCoR), and the Division of Materials Research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新量子材料的发现在技术进步中起着至关重要的作用。数据科学工具的使用,再加上人工智能(AI),有可能大大加快材料的发现。然而,这些工具的有效性依赖于拥有大型、高质量的材料数据库。不幸的是,过去十年建立的许多现有数据库不足以准确预测量子材料的性质。量子材料在原子尺度上表现出高度相关的量子力学现象,在宏观尺度上表现出磁性和超导性等社会有用的性质。 该项目旨在通过使用现代量子多体方法实现高吞吐量算法来开发一个开源,高保真的材料数据库,该方法尚未用于大规模数据库创建。此外,该项目还使用人工智能工具增强了现有的大型材料数据库。为了确保数据库的可访问性,该项目将向科学界免费提供这些数据库的基础设施和教程。重要的材料数据库包括由密度泛函理论(DFT)引擎创建的专有物理属性数据,该引擎在存在平均电势的情况下以独立电子的形式描述简单材料的物理属性。对于不能以这种平均方式处理的强相关量子材料,DFT通常无法预测正确的物理性质,而动态平均场理论(DMFT)方法允许以更高但仍然实用的成本更准确地计算相同的性质。为了克服现有材料数据库基于DFT的缺点,并将数据科学驱动的材料发现转变为一个新时代,该团队的目标是建立一个量子材料特性的开源高保真数据库,其中DFT引擎被基于DFT和DMFT(DFT+DMFT)组合的更精确的多体方法所取代,通过开发新的高通量DFT+DMFT工作流程。这种高保真但较小的数据库将用于使用人工智能工具(如迁移学习)校正现有的大规模DFT数据库,一旦知道较小域中的高保真数据,就可以自动修复不太准确的DFT数据中的系统错误。该研究还旨在扩展学生在量子理论,人工智能职业以及连接材料和数据科学的跨学科领域的知识和技能。该项目由NSF高级网络基础设施办公室,刺激竞争研究的既定计划(EPSCoR),该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhasish Mandal其他文献

Spin-selective evolution of the Zhang-Rice state in binary transition metal oxide MnO(001) film
二元过渡金属氧化物MnO(001)薄膜中Zhang-Rice态的自旋选择性演化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Kundu;P. Sheverdyaeva;P. Moras;K. Menon;Subhasish Mandal;Carlo Carbone
  • 通讯作者:
    Carlo Carbone

Subhasish Mandal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
  • 批准号:
    2327660
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329192
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 29.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了