Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials

合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式

基本信息

  • 批准号:
    2311697
  • 负责人:
  • 金额:
    $ 28.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract Soft materials are ubiquitous in nature (plants, tissue, foods) and are also of interest for advanced engineering applications (implantable medical devices, etc.). Soft materials are incredibly versatile, particularly polymer networks and gels, as they can be engineered to be compatible with complex environments (biological systems, tissues, aqueous environments, etc.). While it is well known that soft materials can withstand larger deformations than brittle plastics or metals, they still suffer from sudden and catastrophic failure, such as a rapidly forming crack spanning the entire material nearly instantaneously. This limits the potential of soft materials, as engineered materials are typically designed to avoid or eliminate the likelihood of catastrophic failure events. While fundamental relationships between geometry and failure mode have been explored in traditional elastic solids, limited work has been done to establish similar design principles for soft materials. Therefore, understanding how to tailor the failure response of soft materials, particularly prior to use, is essential. This project addresses this gap by investigating how the geometry (e.g., lattice pattern), as well as the presence of inclusions (e.g., filled-in domains within a lattice structure) influence the failure mode of soft materials, mainly polymer gels. Furthermore, this project provides unique training opportunities for students from varied disciplines (materials science, physics, and civil engineering) by enabling them to work together collaboratively and participate in research exchanges between the two institutions. These exchanges provide students with the opportunity to engage in a discipline and department outside of their own to enhance their training, broaden their professional scientific network, and establish themselves as members of the STEM workforce.Technical Abstract Composite materials, such as perforated structures or structures with embedded domains, offer exceptional freedom to alter material properties such as stiffness, toughness, and failure mode. For example, the failure mode of a plastic lattice subjected to strain can be tailored via geometry; thinner struts afford slow and diffuse failure. While this type of relationship between geometry and failure mode has been explored in traditional elastic solids, limited work has been done to establish similar design principles for soft materials. This project addresses this gap by investigating how the geometry of a lattice structure, as well as engineered inclusions, influence the failure mode of soft materials (polymer gels). This study uses a combined experimental and computational approach to systematically address a large parameter space for this material system, including lattice geometry, gel stiffness, and the differential in mechanical properties between the lattice structure and engineered inclusions. In this project, samples are fabricated using photo-lithography techniques, and photoelastic imaging will be used to establish the relationship between stress transmission and failure mode. The photoelastic imaging informs computational models using the eXtended Finite Element Method (XFEM). This project provides crucial information regarding the failure behavior of soft materials, which are ubiquitous in nature and engineered materials. Furthermore, this information will advance application fields including biomedical devices and soft robotics, where soft materials are heavily employed but challenges arise when addressing the failure and mechanical performance of these platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软材料在自然界中无处不在(植物,组织,食物),并且对于先进的工程应用(植入式医疗设备等)也很感兴趣。软材料是非常通用的,特别是聚合物网络和凝胶,因为它们可以被设计成与复杂的环境(生物系统,组织,水环境等)兼容。虽然众所周知,软材料可以承受比脆性塑料或金属更大的变形,但它们仍然遭受突然和灾难性的故障,例如几乎瞬间跨越整个材料的快速形成的裂纹。这限制了软材料的潜力,因为工程材料通常旨在避免或消除灾难性故障事件的可能性。虽然几何形状和失效模式之间的基本关系已经在传统的弹性固体中进行了探索,但为软材料建立类似的设计原则所做的工作有限。因此,了解如何定制软材料的失效响应,特别是在使用之前,是至关重要的。该项目通过调查几何形状(例如,晶格图案),以及夹杂物的存在(例如,晶格结构内的填充域)影响软材料(主要是聚合物凝胶)的失效模式。此外,该项目为来自不同学科(材料科学,物理学和土木工程)的学生提供了独特的培训机会,使他们能够共同合作并参与两个机构之间的研究交流。这些交流为学生提供了参与自己学科和部门之外的机会,以加强他们的培训,扩大他们的专业科学网络,并将自己建立为STEM劳动力的一员。技术摘要复合材料,如穿孔结构或嵌入域结构,提供了特殊的自由度来改变材料特性,如刚度,韧性和失效模式。例如,经受应变的塑料网格的失效模式可以通过几何形状来定制;较薄的支柱提供缓慢和扩散的失效。虽然在传统的弹性固体中已经探索了几何形状和失效模式之间的这种类型的关系,但是在为软材料建立类似的设计原则方面所做的工作有限。该项目通过研究网格结构的几何形状以及工程内含物如何影响软材料(聚合物凝胶)的失效模式来解决这一差距。本研究采用实验和计算相结合的方法来系统地解决这种材料系统的大参数空间,包括晶格几何形状,凝胶刚度,以及晶格结构和工程夹杂物之间的机械性能差异。在这个项目中,使用光刻技术制作样品,并使用光弹性成像来建立应力传递和失效模式之间的关系。光弹性成像通知使用扩展有限元法(XFEM)的计算模型。该项目提供了关于软材料失效行为的重要信息,软材料在自然界和工程材料中普遍存在。此外,这些信息将推动生物医学设备和软机器人等应用领域的发展,这些领域大量使用软材料,但在解决这些平台的故障和机械性能时会出现挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caroline Szczepanski其他文献

Caroline Szczepanski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

多重响应性智能化微凝胶载体协同干细胞靶向治疗炎症性肠病的作用及效果研究
  • 批准号:
    KLZ25H300001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
银纳米粒子修饰丝素蛋白微球与白及多糖水凝胶协同治疗糖尿病伤口感染的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
经皮靶向纳米凝胶阻断能量代谢协同干预早期瘢痕增生的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
纳米纤维素水凝胶敷料自愈合与粘附结构协同调控机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
NTP耦合气凝胶协同催化CO2-CH4高效转化及其机理研究
  • 批准号:
    JCZRQN202500075
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
抗菌传感水凝胶的表面局部浸润溶胀与抗菌传感协同互配机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
微纳米多孔气凝胶高光谱选择性-隔热性能调控机制及协同优化研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
单原子纳米酶促交联水凝胶Cu-N4ClG-COL抗氧化协同免疫调控修复骨关节炎软骨缺损的机制研究
  • 批准号:
    82360426
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
射频响应铂簇纳米凝胶血管栓塞剂用于肝癌多模式精准协同治疗的研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向水中酚类污染物氧化聚合的单原子碳气凝胶构建及其光热协同催化机制研究
  • 批准号:
    22376158
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Designing Linked Gel Networks with Tunable Valence
合作研究:DMREF:设计具有可调价的链接凝胶网络
  • 批准号:
    2323483
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Designing Linked Gel Networks with Tunable Valence
合作研究:DMREF:设计具有可调价的链接凝胶网络
  • 批准号:
    2323482
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
  • 批准号:
    2311698
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: DOC removal in the ocean according to polymer gel theory
合作研究:根据聚合物凝胶理论去除海洋中的DOC
  • 批准号:
    1634009
  • 财政年份:
    2016
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Collaborative Research: DOC Removal in the Ocean According to Polymer Gel Theory
合作研究:根据聚合物凝胶理论去除海洋中的DOC
  • 批准号:
    1634250
  • 财政年份:
    2016
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Functionally-Graded Sol-Gel-Derived Silica Films on Multiple Length Scales, from Single Molecules to Macroscopic Properties
合作研究:功能梯度溶胶-凝胶衍生二氧化硅薄膜在多个长度尺度上的表征,从单分子到宏观性能
  • 批准号:
    1404805
  • 财政年份:
    2014
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterization of Functionally-Graded Sol-Gel-Derived Silica Films on Multiple Length Scales, from Single Molecules to Macroscopic Properties
合作研究:功能梯度溶胶-凝胶衍生二氧化硅薄膜在多个长度尺度上的表征,从单分子到宏观性能
  • 批准号:
    1404898
  • 财政年份:
    2014
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Laser Treated Sol-Gel Glass for Ultra-High-Quality Photonic Devices
合作研究:用于超高品质光子器件的激光处理溶胶-凝胶玻璃
  • 批准号:
    0907467
  • 财政年份:
    2009
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Laser Treated Sol-Gel Glass for Ultra-High-Quality Photonic Devices
合作研究:用于超高品质光子器件的激光处理溶胶-凝胶玻璃
  • 批准号:
    0907638
  • 财政年份:
    2009
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
U.S.-Mexico Collaborative Research: The Sol-gel Processing and Characterization of Supported Metal Catalysts
美国-墨西哥合作研究:负载型金属催化剂的溶胶-凝胶加工和表征
  • 批准号:
    9221932
  • 财政年份:
    1993
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了