Collaborative Research: Interactions of Sustainable Urban Design with Gentrification Processes
合作研究:可持续城市设计与绅士化进程的相互作用
基本信息
- 批准号:2312048
- 负责人:
- 金额:$ 22.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cities around the world aim to advance sustainable and resilient built environments that equitably reduce carbon emissions, mitigate heat island effects, and enhance urban livability. However, these initiatives can increase housing prices and the cost of living, ultimately displacing long-time residents through a process called green gentrification. This research will evaluate and predict green gentrification associated with various sustainability initiatives inurban neighborhoods by examining and comparing historical and current imagery from Google Street View and demographic data from the Census Bureau. Using Artificial Intelligence tools, the research team will identify the physical indicators and sociodemographic metrics of green gentrification to analyze gentrification processes vis-à-vis urban sustainability initiatives. These tools will be developed using the City of Philadelphia as a case study and the sustainability initiatives it has implemented over the last two decades. These initiatives include green space development, urban agriculture, tree planting, energy efficient retrofits, cycle lanes, public transit, and solar energy installations. The research will be an important step towards addressing significant societal challenges in Philadelphia and other urban contexts. Urban policymakers and planners will gain a better understanding of how sustainability policies and programs influence gentrification and how to mitigate its effects and improve equitable outcomes. Furthermore, communities and public institutions will be better able to analyze, predict, and address the negative consequences of sustainable development, identify the most vulnerable neighborhoods, and advance equitable sustainability initiatives.There is a critical knowledge gap in understanding how, when, and which urban sustainability programs (i.e., improvements to transit, greenspace, and housing) impact gentrification-led displacement. In this research, the investigators will develop new models and methods that rely on recent advances in Machine Learning and the availability of high-volume spatiotemporal and sociodemographic data. The research team will develop methods at the intersection of urban analytics and built environment-centered predictive analyses to forecast and map gentrification susceptibility. The team will integrate these forecasts with models of urban building energy use, greenspace development, and transit systems to identify gentrification processes, in all its variants and lifecycle stages, that are driven by sustainability programs. The research project will harness artificial intelligence image recognition methods with Machine Learning algorithms, urban energy modeling, and sociodemographic data with the following three outcomes: (i) Development of Artificial Intelligence computer vision methods applied to Google Street View (GSV) image data with a Machine Learning (ML) algorithm to identify and categorize indicators of green gentrification; (ii) Integration of sociodemographic and energy data with the GSV-ML model developed in part (i) to evaluate the relationship between green gentrification and sustainable interventions. This integrated model will use Machine Learning to quantify the predictive power of different urban greening features on neighborhood gentrification susceptibility and develop a tentative forecast of gentrification for the study area; (iii) Elicidation of sustainable urban design and policies that are underpinned by social justice and equity concerns and prevent green gentrification. Ultimately, this project focuses on predicting the ways in which greening interventions impact gentrification processes to advance more equitable sustainable urban policies and programs.This collaborative project is co-funded by the CBET/ENG Environmental Sustainability program and the BCS/SBE Human-Environmental and Geographical Sciences program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世界各地的城市都致力于推进可持续和有弹性的建筑环境,以公平地减少碳排放,缓解热岛效应,并提高城市宜居性。然而,这些举措可能会提高房价和生活成本,最终通过一个称为绿色绅士化的过程取代长期居民。这项研究将评估和预测绿色中产阶级化与各种可持续发展倡议inurban街区通过检查和比较历史和当前的图像从谷歌街景和人口普查局的人口数据。利用人工智能工具,研究团队将确定绿色绅士化的物理指标和社会人口指标,以分析绅士化过程维斯城市可持续发展举措。这些工具将使用费城市作为案例研究,并在过去二十年中实施的可持续发展举措。这些举措包括绿色空间开发、城市农业、植树、节能改造、自行车道、公共交通和太阳能装置。这项研究将是解决费城和其他城市环境中重大社会挑战的重要一步。城市决策者和规划者将更好地了解可持续发展政策和计划如何影响中产阶级化,以及如何减轻其影响并改善公平结果。此外,社区和公共机构将能够更好地分析、预测和解决可持续发展的负面影响,识别最脆弱的社区,并推进公平的可持续发展倡议。在理解如何、何时以及哪些城市可持续发展计划(即,交通、绿地和住房的改善)影响了中产阶级化导致的流离失所。在这项研究中,研究人员将开发新的模型和方法,这些模型和方法依赖于机器学习的最新进展以及大量时空和社会人口数据的可用性。该研究团队将在城市分析和以建筑环境为中心的预测分析的交叉点上开发方法,以预测和绘制中产阶级化的敏感性。该团队将这些预测与城市建筑能源使用、绿色空间开发和交通系统的模型相结合,以确定由可持续发展计划驱动的所有变体和生命周期阶段的绅士化过程。该研究项目将利用机器学习算法、城市能源建模和社会人口数据的人工智能图像识别方法,取得以下三项成果:(i)开发应用于谷歌街景(GSV)图像数据的人工智能计算机视觉方法,采用机器学习(ML)算法识别和分类绿色中产阶级化指标;(二)将社会人口和能源数据与第(一)部分开发的GSV-ML模型相结合,以评估绿色中产阶级化与可持续干预措施之间的关系。这个综合模型将使用机器学习来量化不同的城市绿化功能对社区中产阶级化敏感性的预测能力,并为研究区域制定中产阶级化的初步预测;(iii)启发可持续的城市设计和政策,这些设计和政策以社会正义和公平问题为基础,并防止绿色中产阶级化。最后,该项目的重点是预测绿化干预措施如何影响绅士化进程,以促进更公平的可持续城市政策和计划。该合作项目由CBET/ENG环境可持续性计划和BCS/SBE人类-环境和地理科学计划。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charlyn Pearsall其他文献
Charlyn Pearsall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
- 批准号:
2349221 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Electric Vehicles in the Arctic (EVITA) - Interactions with Cold Weather, Microgrids, People, and Policy
合作研究:NNA 研究:北极电动汽车 (EVITA) - 与寒冷天气、微电网、人员和政策的相互作用
- 批准号:
2318385 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
- 批准号:
2346372 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
- 批准号:
2346371 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: MICRO-CCS: Microbial Interactions Create Research Opportunities for Community College Students
合作研究:REU 网站:MICRO-CCS:微生物相互作用为社区学院学生创造研究机会
- 批准号:
2349220 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Electric Vehicles in the Arctic (EVITA) - Interactions with Cold Weather, Microgrids, People, and Policy
合作研究:NNA 研究:北极电动汽车 (EVITA) - 与寒冷天气、微电网、人员和政策的相互作用
- 批准号:
2318384 - 财政年份:2024
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant
Collaborative Research: Increasing Capabilities of Heterogeneous Robot Teams through Mutually Beneficial Physical Interactions
协作研究:通过互利的物理交互提高异构机器人团队的能力
- 批准号:
2308653 - 财政年份:2023
- 资助金额:
$ 22.47万 - 项目类别:
Standard Grant