Collaborative Research: AF: Medium: Machine Learning Markets: Dynamics, Competition, and Interventions
协作研究:AF:媒介:机器学习市场:动态、竞争和干预
基本信息
- 批准号:2312774
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nearly every aspect of modern life involves predictions of machine learning (ML) models: e.g., where we choose to shop, live, or apply for jobs. ML models are built and maintained by service providers, who use predictions to offer services to individuals. Based on prediction quality, individuals choose amongst services, or may choose to use none. This interaction gives rise to an ML-enabled market wherein the decisions made by providers and individuals are highly consequential. As individuals choose amongst services, such services gain or lose not only customers, but also access to data that allows them to refine their predictions. The dynamics of interactions between providers and users with varied motivations are more complex than traditional market models. This project aims to develop the theoretical and algorithmic foundations for characterizing and shaping ML-enabled market conditions and algorithmic tools for achieving improved social outcomes. Beyond the theoretical contributions, products of this project will support the development of policy for governing ML-enabled markets in a fair and equitable manner. The project's educational goals include mentoring researchers at the undergraduate and graduate levels, developing new course materials, and promoting dialog on equity in ML through talks, reading groups, and topical workshop activities coordinated with the NSF Institute for Foundations of Data Science at University of Washington.Interactions between individuals, represented by data, and providers, represented by prediction functions in ML-enabled markets, give rise to complex dynamics, and competitive or cooperative games. The choices of both providers and individuals may be strategic or myopic, depending on whether agents anticipate how their choices will affect future market conditions. Providers and users may act according to a variety of objectives: predictive accuracy (service quality), market share, privacy, fairness, or even adversarial intent. This project analyzes the complex interactions between providers and individuals in ML-enabled markets, with a research agenda comprised of three thrusts: (1) Characterize the participation game and dynamics that arise when users with a variety of objectives act strategically, while providers use data myopically to improve the accuracy of their predictions; (2) Characterize the prediction--retention game and dynamics that arise between strategic providers (including the incentives and social costs of strategic behavior), when users choose their participation level myopically; (3) Combine insights from the first two threads to design algorithmic interventions that improve metrics of outcomes such as social welfare and fairness in ML-enabled markets. Carrying out this agenda will entail developing new theory and algorithms at the intersection of game theory, statistical learning, dynamical systems, and optimization. Challenges due to nonlinear dynamics, nonconvex landscapes, and information limitations will be addressed, and the equilibrium landscape of competitive games with novel structure will be characterized, contributing to the core fields of game theory and machine learning, and their social impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代生活的几乎每个方面都涉及机器学习 (ML) 模型的预测:例如,我们选择在哪里购物、居住或申请工作。机器学习模型由服务提供商构建和维护,他们使用预测为个人提供服务。根据预测质量,个人可以选择服务,也可以选择不使用任何服务。这种交互催生了一个支持机器学习的市场,其中提供商和个人做出的决策非常重要。当个人在服务中进行选择时,此类服务不仅会赢得或失去客户,还会获得使他们能够改进预测的数据。具有不同动机的提供者和用户之间的互动动态比传统的市场模型更加复杂。该项目旨在开发理论和算法基础,用于描述和塑造机器学习支持的市场条件和算法工具,以实现改善的社会成果。除了理论贡献之外,该项目的产品还将支持制定以公平公正的方式管理机器学习市场的政策。该项目的教育目标包括指导本科生和研究生水平的研究人员、开发新的课程材料,以及通过与华盛顿大学 NSF 数据科学研究所协调的讲座、阅读小组和专题研讨会活动来促进 ML 公平性对话。以数据为代表的个人与以 ML 支持的市场中的预测功能为代表的提供者之间的互动会产生复杂的动态,以及竞争或竞争。 合作游戏。提供商和个人的选择可能是战略性的,也可能是短视的,这取决于代理商是否预期他们的选择将如何影响未来的市场状况。提供商和用户可以根据各种目标采取行动:预测准确性(服务质量)、市场份额、隐私、公平性,甚至对抗意图。该项目分析了机器学习市场中提供商和个人之间复杂的互动,研究议程由三个主旨组成:(1) 描述当具有各种目标的用户战略性地采取行动时出现的参与博弈和动态,而提供商则短视地使用数据来提高其预测的准确性; (2)描述当用户短视地选择其参与水平时,策略提供者之间出现的预测-保留博弈和动态(包括策略行为的激励和社会成本); (3) 结合前两条线索的见解来设计算法干预措施,以改善结果指标,例如机器学习市场中的社会福利和公平性。执行这一议程将需要在博弈论、统计学习、动力系统和优化的交叉领域开发新的理论和算法。由于非线性动力学、非凸景观和信息限制带来的挑战将得到解决,并且具有新颖结构的竞技游戏的均衡景观将得到表征,为博弈论和机器学习的核心领域及其社会影响做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Dean其他文献
FOOD DESERTS, CRIME, AND NEIGHBORHOOD CONTEXT: AN EXAMINATION OF THE IMPACT OF FOOD INSECURITY ON VIOLENT CRIME IN LITTLE ROCK By
粮食荒漠、犯罪和邻里环境:考察粮食不安全对小石城暴力犯罪的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sarah Dean;Rick Dierenfeldt - 通讯作者:
Rick Dierenfeldt
Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
人工智能和用户相互塑造的原因:数学模型的作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sarah Dean;Evan Dong;Meena Jagadeesan;Liu Leqi - 通讯作者:
Liu Leqi
Changes in Alcohol Craving Following Realtime fMRI Neurofeedback
- DOI:
10.1016/j.biopsych.2020.02.671 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Samantha Fede;Sarah Dean;Mallory Kisner;Reza Momenan - 通讯作者:
Reza Momenan
AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks
为公共利益而发展的人工智能:从抽象陷阱到社会技术风险
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mckane Andrus;Sarah Dean;T. Gilbert;Nathan Lambert;T. Zick - 通讯作者:
T. Zick
Designing Recommender Systems with Reachability in Mind
设计推荐系统时考虑可达性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sarah Dean;Mihaela Curmei;B. Recht - 通讯作者:
B. Recht
Sarah Dean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant














{{item.name}}会员




