Using Machine Learning and Animal Models to Reveal Bacterial Subnetworks Essential for Development Within Complex Gut Microbiomes.
使用机器学习和动物模型揭示复杂肠道微生物组内发育所必需的细菌子网络。
基本信息
- 批准号:2312818
- 负责人:
- 金额:$ 123.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Multicellular animals emerged into a microbial world and, many animals, including humans, maintain gut microbiomes that are complex microbial communities that they require for normal development and growth. The enormous species and functional diversity comprising these microbiomes confound efforts to link microbiome composition to specific healthy host phenotypes. The team will introduce random sub-samples of the total gut microbiome to a germ-free host and screen for those capable of resolving many of the growth and developmental deficiencies associated with being germ-free. Next, machine learning (ML) approaches will identify bacterial species that are consistently associated with promoting healthy host outcomes. Finally, the team will construct and introduce synthetic microbiomes comprised of bacterial species recommended by the ML models to germ-free animals to validate their predictions. Ultimately, this effort will identify specific bacterial lineages that are integral to animal growth, development and evolution. This interdisciplinary project leverages legacy and cutting-edge technologies to address what aspects of gut microbiome composition are essential for positive host outcomes. Additionally, this project will demonstrate the power of low-cost/high-replicate model systems and predictive modeling for rapid hypothesis generation and testing. Finally, investigators and postdoctoral scientists doing microbiome sciences will be afforded opportunities to recruit next-gen microbiome scientists from HBCUs with the goal of building a diverse microbiome science workforce. Further, these participants will obtain training in mentoring across different positionalities to enable them to build productive, long-term professional relationships with their mentees.Host-associated bacteria are inextricably involved in the life history and evolution of metazoans. This research project builds on emerging evidence that suggests composition of gut microbiota (i.e. species/functional diversity) have large effects on host animal growth and development, and these effects are realized at several levels of biological organization (i.e. gene network expression, cellular proliferation and tissue differentiation, organismal body size and maturation). Many animals, including mammals, harbor species-rich and functionally complex gut microbiomes and identifying bacterial lineages within those complex communities that are critical for animal growth and development presents challenges that can be addressed through interdisciplinary approaches. Specifically, machine learning approaches will be used to integrate high-replicate multi-omics data from the gut microbiome and its host as well as host developmental, physiological and gastric histological data from several well-defined microbiome perturbations to infer bacterial species sub-networks that are consistently associated with normal host growth and development. The research team will test the hypothesis that these networks are host-supportive by constructing synthetic microbiomes comprised of predicted species in axenic juvenile hosts and track their development. This interdisciplinary approach leverages molecular and microbiological approaches, legacy (i.e. random forest) and cutting edge (i.e. convolution neural networks with triplet loss) machine learning tools, and an invertebrate animal model that normally harbors a complex gut microbiome and can easily be reared axenically without the use of antibiotics (i.e. Periplaneta americana) to shed light on the role of gut microbiota on host growth and development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多细胞动物出现在微生物世界,许多动物,包括人类,维持肠道微生物群,这是它们正常发育和生长所需要的复杂微生物群落。包含这些微生物组的巨大物种和功能多样性使将微生物组组成与特定健康宿主表型联系起来的努力变得混乱。研究小组将把总肠道微生物组的随机子样本引入无菌宿主,并筛选那些能够解决许多与无菌相关的生长和发育缺陷的人。接下来,机器学习(ML)方法将识别与促进健康宿主结果一致相关的细菌种类。最后,该团队将构建并引入由ML模型推荐的细菌物种组成的合成微生物组,以验证其预测。最终,这项工作将确定对动物生长、发育和进化不可或缺的特定细菌谱系。这个跨学科项目利用传统和尖端技术来解决肠道微生物组组成的哪些方面对积极的宿主结果至关重要。此外,该项目将展示低成本/高重复模型系统和快速假设生成和测试的预测建模的能力。最后,研究微生物组科学的研究人员和博士后科学家将有机会从hbcu招募下一代微生物组科学家,目标是建立一支多样化的微生物组科学队伍。此外,这些参与者将获得不同职位的指导培训,使他们能够与他们的学员建立富有成效的长期专业关系。宿主相关细菌不可避免地参与了后生动物的生活史和进化。本研究项目建立在新的证据基础上,这些证据表明肠道微生物群的组成(即物种/功能多样性)对宿主动物的生长发育有很大影响,这些影响在生物组织的几个层面上实现(即基因网络表达、细胞增殖和组织分化、有机体体型和成熟)。许多动物,包括哺乳动物,拥有丰富的物种和功能复杂的肠道微生物群,在这些复杂的群落中识别细菌谱系对动物的生长和发育至关重要,这是可以通过跨学科方法解决的挑战。具体来说,机器学习方法将用于整合来自肠道微生物组及其宿主的高重复多组学数据,以及来自几个定义明确的微生物组扰动的宿主发育、生理和胃组织学数据,以推断与正常宿主生长和发育一致的细菌物种子网络。研究小组将通过在无菌幼年宿主中构建由预测物种组成的合成微生物组并跟踪它们的发育来验证这些网络支持宿主的假设。这种跨学科的方法利用分子和微生物学方法,传统(即随机森林)和前沿(即具有三重态损失的卷积神经网络)机器学习工具,以及通常含有复杂肠道微生物群的无脊椎动物模型,可以在不使用抗生素的情况下轻松饲养(即美洲大蠊),以阐明肠道微生物群在宿主生长和发育中的作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zakee Sabree其他文献
Zakee Sabree的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zakee Sabree', 18)}}的其他基金
Bacteria-mediated gut development and symbiont genome evolution in a model invertebrate
无脊椎动物模型中细菌介导的肠道发育和共生体基因组进化
- 批准号:
1656786 - 财政年份:2017
- 资助金额:
$ 123.45万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Standard Grant
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Linkage Projects
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Collaborative R&D
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 123.45万 - 项目类别:
Standard Grant