RI: Medium: Foundations of Recourse Verification in Machine Learning
RI:媒介:机器学习资源验证的基础
基本信息
- 批准号:2313105
- 负责人:
- 金额:$ 118.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning models now automate decisions that affect millions of individuals in the United States, assigning predictions to decide who will receive a loan, a job interview, or a public service. Modern approaches for building such models do not account for actionability - i.e., how individuals can modify the features used by a model to determine their predictions. As a result, models in domains like lending and hiring can assign predictions that are fixed - meaning that individuals who are denied a loan or an interview may be permanently locked out from access to credit and employment. This project will develop new methods to ensure that models assign predictions that individuals can change through their actions in feature space. These methods will allow practitioners to build models that protect the right to access in applications like lending, hiring, and the allocation of public services.The project will develop methods that can be used to ensure access at various stages of the modern machine learning lifecycle. This includes methods for (1) confinement detection, i.e., to identify regions of feature space where individuals may be unable to change their features due to actionability constraints; (2) model-specific verification, i.e., to check that a model can provide recourse in model development or deployment; (3) learning with recourse guarantees, i.e., to train a model whose predictions can be changed through a well-defined set of actions in feature space. The methods will draw on the research teams’ expertise in using modern optimization techniques to promote fairness, robustness, and reliability in machine learning, and be refined through real-world applications in lending and hiring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习模型现在可以自动化影响美国数百万人的决策,分配预测来决定谁将获得贷款,工作面试或公共服务。建立此类模型的现代方法并不考虑可操作性--即,个人如何修改模型使用的特征来确定他们的预测。因此,贷款和招聘等领域的模型可以分配固定的预测-这意味着被拒绝贷款或面试的个人可能会被永久锁定在信贷和就业之外。该项目将开发新的方法,以确保模型分配的预测,个人可以通过他们在特征空间中的行动改变。这些方法将使从业者能够构建模型,保护贷款,招聘和公共服务分配等应用程序的访问权。该项目将开发可用于确保现代机器学习生命周期各个阶段的访问权的方法。这包括用于(1)限制检测的方法,即,以识别特征空间的区域,其中个体可能由于可动作性约束而不能改变其特征;(2)模型特定验证,即,检查模型是否可以在模型开发或部署中提供追索权;(3)学习追索权保证,即,训练一个模型,它的预测可以通过特征空间中一组定义良好的动作来改变。该方法将利用研究团队在使用现代优化技术方面的专业知识,以促进机器学习的公平性,鲁棒性和可靠性,并通过贷款和招聘的实际应用进行改进。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsui-Wei Weng其他文献
Tsui-Wei Weng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsui-Wei Weng', 18)}}的其他基金
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
- 批准号:
2107189 - 财政年份:2021
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312241 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: SaTC: Medium: Theoretical Foundations of Lattice-Based Cryptography
合作研究:AF:SaTC:媒介:基于格的密码学的理论基础
- 批准号:
2312296 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312242 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
NeTS: Medium: Foundations and Applications of Modular Verification of Networks
NeTS:媒介:网络模块化验证的基础和应用
- 批准号:
2312539 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312204 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312243 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: SaTC: Medium: Theoretical Foundations of Lattice-Based Cryptography
合作研究:AF:SaTC:媒介:基于格的密码学的理论基础
- 批准号:
2312297 - 财政年份:2023
- 资助金额:
$ 118.29万 - 项目类别:
Continuing Grant