BRC-BIO: Optimizing Snake Identification by Understanding the Interplay of Computer Vision, Crowdsourcing, and Expert Verification

BRC-BIO:通过了解计算机视觉、众包和专家验证的相互作用来优化蛇识别

基本信息

  • 批准号:
    2313356
  • 负责人:
  • 金额:
    $ 45.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Species identification is fundamental to biology, and in the case of snakes not only helps understanding their diversity but could also be critical in the case of snake bites. Recently, computer systems that can help people with classification tasks have become a lot more common. Computer vision algorithms are computer programs that have been trained to perform specific classification tasks, such as Shazam, Google Lens, iNaturalist’s Seek, and eBird’s Merlin app. This research aims to understand the influence that conflicting information can have on the accuracy of classification tasks. This is important because it could lead us to an optimal pipeline that allows humans and computers to work together to perform these tasks while making the minimal number of mistakes. This project involves the identification of snake species from photos, a task that is difficult for both humans and computers because there are over 4,000 different snake species and some of them look extremely similar. In the project, people will be shown images of snakes and asked to identify them to species. Sometimes, they will also receive information about what other people or computer vision algorithms called these snakes. The researchers will measure any changes in identification accuracy that are caused by the additional information. The researchers will also gather images of rare species of snakes from preserved specimens in natural history museums to determine whether these types of images can help train computer vision algorithms to better identify these snakes in the wild. This project will provide training opportunities for undergraduate and graduate students, as well as invite participation from the public in identification and data collection. This project will explore the intersection of Convolutional Neural Network (CNN) and human species identification. It will also study effects of accuracy of CNNs from different training sets, using field and collection data. Using a gamified platform, researchers will pre-test the snake ID skills of participants, then randomly assign participants snake ID tasks with or without prior labels. Some prior labels will be correct and others will be incorrect. Some prior labels will appear to come from other participants and others from computer vision algorithms. Researchers will measure how frequently players give an incorrect ID that matches competing or confirming prior information. Whether and how susceptible players are to join the “bandwagon” of incorrect IDs from algorithms or other humans will help determine how and when to add a “human-in-the-loop” while maintaining or increasing identification accuracy. In the second project, the performance of computer vision algorithms trained on images of museum specimens, wild snakes, or both will be compared in order to better understand the potential of using photos of museum specimens to nourish training datasets for computer vision algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物种鉴定是生物学的基础,对于蛇来说,不仅有助于了解它们的多样性,而且在蛇咬伤的情况下也可能是至关重要的。最近,可以帮助人们完成分类任务的计算机系统变得更加常见。计算机视觉算法是经过训练以执行特定分类任务的计算机程序,如Shazam、Google Lens、iNaturist的Seek和eBird的Merlin应用程序。本研究旨在了解冲突信息对分类任务准确性的影响。这一点很重要,因为它可以将我们引向一条最优的管道,允许人类和计算机一起工作来执行这些任务,同时犯下最少的错误。这个项目涉及从照片中识别蛇的种类,这是一项对人类和计算机都很困难的任务,因为有4000多种不同的蛇,其中一些看起来非常相似。在该项目中,将向人们展示蛇的图像,并要求人们识别它们的物种。有时,他们还会收到其他人或计算机视觉算法所称的这些蛇的信息。研究人员将测量额外信息导致的识别准确性的任何变化。研究人员还将从自然历史博物馆保存下来的标本中收集稀有物种蛇的图像,以确定这些类型的图像是否可以帮助训练计算机视觉算法,以更好地识别野生蛇。该项目将为本科生和研究生提供培训机会,并邀请公众参与身份识别和数据收集。该项目将探索卷积神经网络(CNN)和人类物种识别的交叉。它还将使用现场和收集的数据来研究来自不同训练集的CNN精度的影响。使用游戏化的平台,研究人员将预先测试参与者的蛇ID技能,然后随机分配给参与者有或没有事先标签的蛇ID任务。以前的一些标签将是正确的,而其他标签将是错误的。之前的一些标签似乎来自其他参与者,另一些则来自计算机视觉算法。研究人员将测量玩家给出与竞争或确认先前信息相匹配的错误ID的频率。玩家是否以及在多大程度上会加入来自算法或其他人的错误ID的“大潮”,这将有助于确定如何以及何时添加“人在循环中”,同时保持或提高识别准确性。在第二个项目中,将比较在博物馆标本、野生蛇或两者的图像上训练的计算机视觉算法的性能,以便更好地了解使用博物馆标本的照片为计算机视觉算法提供训练数据集的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Durso其他文献

Andrew Durso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗 根分叉病变的临床疗效研究
  • 批准号:
    2024JJ9542
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态 光散射免疫传感检测平台的建立及机制研究
  • 批准号:
    Q24C200014
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
  • 批准号:
    LY23E080003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
  • 批准号:
    22005126
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
  • 批准号:
    19ZR1438800
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
  • 批准号:
    41877481
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Fellowship
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Collaborative R&D
Designing a bio-sensitive visualisation for saltmarsh conservation
设计用于盐沼保护的生物敏感可视化
  • 批准号:
    AH/Z50533X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Research Grant
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Research Grant
Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
  • 批准号:
    AH/Z505675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Research Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Continuing Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
  • 批准号:
    2328276
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 45.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了