RAPID: Collaborative Research: Electrospun Nanofibrous Air Filters for Coronavirus Control

RAPID:合作研究:用于控制冠状病毒的电纺纳米纤维空气过滤器

基本信息

  • 批准号:
    2313449
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

A collaborative team consisting of researchers from The George Washington University and the University of California, Riverside is developing electrospun nanofibrous air filters for controlling the transmission of coronavirus, including SARS-CoV-2. The pandemic of COVID-19 has raised a significant public health concern in 2020. The spread of COVID-19 is difficult to control, because SARS-CoV-2 is environmentally persistent and it can potentially be suspended in aerosols for long-range, airborne transmission and infection. Air filtration is crucial to control SARS-CoV-2 transmission, however most air filters used in residential, commercial, and industrial buildings are not effective for retaining viruses. As personal protective equipment for healthcare personnel or even the general public, respirators and masks that can effectively capture the virus are also urgently needed for this pandemic. Electrospinning has emerged as a novel technology to synthesize non-woven nanofibrous mats, and it is both industrially viable for large-scale manufacturing and deployable onsite for small-scale applications by a portable device. The fabricated nanofibrous mats are ideal for air filtration, because they have a reduced pore size to efficiently capture the virus, a large porosity to reduce air pressure drop in filtration, well-controlled properties, and mechanical robustness and flexibility. This RAPID research project will rationally design and fabricate novel nanomaterial-based air filters for coronavirus control, understand the interplay between viral pathogens and nanomaterials in complex environmental matrices, and initiate a fast response for protecting the public health with engineering tools. The project will provide training to students in science and engineering areas and offer them hands-on research experience, and introduce students from diverse backgrounds and educational levels, particularly those from underrepresented groups, to cutting-edge research in STEM. In addition, the project will disseminate the acquired knowledge through education modules, scientific journals and conferences, and science fairs, which will help increase the scientific literacy of the general public. The research team aims to rationally design and fabricate electrospun nanofibrous air filters that are effective, low-cost, scalable, and easy for implementation for coronavirus control, including SARS-CoV-2, and to understand the mechanism of coronavirus removal in air filtration. The researchers will first develop electrospun nanofibrous air filters with diverse morphologies, retained charges, and selective binding sites to enhance the capture of bioaerosols containing coronavirus. Coronavirus removal efficiency under different environmental conditions will next be evaluated to understand the performance and robustness of the air filters. Key virus-nanomaterial interactions will be identified with the aid of both simulation and experimental tools, which can guide future air filter design and optimization. For this RAPID project, the researchers will also test the performance of air filters for removing SARS-CoV-2 in a healthcare facility that houses COVID-19 patients. The proposed research will contribute significantly to nanotechnology, microbiology, and environmental engineering, and it can be potentially transformative in the field of materials at large in terms of multiscale, rational, functional design. It will not only provide a rapid response to COVID-19 outbreaks and public health protection, but also be translated into controlling other virulent pathogens. The project will provide training to students in STEM, particularly introduce students from underrepresented groups and students from diverse backgrounds and educational levels to cutting-edge research. Moreover, the project will disseminate the acquired knowledge to help increase the scientific literacy of the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由乔治华盛顿大学和加州大学滨江分校的研究人员组成的一个合作小组正在开发电纺纳米纤维空气过滤器,用于控制包括SARS-CoV-2在内的冠状病毒的传播。2019冠状病毒病疫情于二零二零年引发重大公共卫生问题。COVID-19的传播很难控制,因为SARS-CoV-2具有环境持久性,它可能悬浮在气溶胶中进行远距离、空气传播和感染。空气过滤对于控制SARS-CoV-2传播至关重要,但大多数用于住宅,商业和工业建筑的空气过滤器对保留病毒无效。作为医护人员甚至普通大众的个人防护装备,能够有效捕捉病毒的口罩和口罩也是此次大流行急需的。静电纺丝已经成为一种合成非织造纳米纤维垫的新技术,并且它对于大规模制造在工业上是可行的,并且可通过便携式设备现场部署用于小规模应用。制造的纳米纤维垫是空气过滤的理想选择,因为它们具有减小的孔径以有效捕获病毒,大的孔隙率以减少过滤中的空气压降,良好的控制性能以及机械鲁棒性和柔性。这个快速研究项目将合理设计和制造新型纳米材料空气过滤器用于冠状病毒控制,了解病毒病原体和纳米材料在复杂环境基质中的相互作用,并启动快速反应,以工程工具保护公众健康。该项目将为科学和工程领域的学生提供培训,为他们提供实践研究经验,并向来自不同背景和教育水平的学生,特别是来自代表性不足群体的学生介绍STEM的前沿研究。此外,该项目将通过教育单元、科学期刊和会议以及科学博览会传播所获得的知识,这将有助于提高公众的科学素养。该研究小组旨在合理设计和制造有效,低成本,可扩展且易于实施的静电纺丝纳米纤维空气过滤器,用于冠状病毒控制,包括SARS-CoV-2,并了解空气过滤中冠状病毒的去除机制。研究人员将首先开发具有不同形态、保留电荷和选择性结合位点的静电纺丝纳米纤维空气过滤器,以增强对含有冠状病毒的生物气溶胶的捕获。接下来将评估不同环境条件下的冠状病毒去除效率,以了解空气过滤器的性能和耐用性。关键的病毒-纳米材料相互作用将在模拟和实验工具的帮助下确定,这可以指导未来的空气过滤器设计和优化。对于这个RAPID项目,研究人员还将测试空气过滤器在容纳COVID-19患者的医疗机构中去除SARS-CoV-2的性能。拟议的研究将对纳米技术,微生物学和环境工程做出重大贡献,并且在多尺度,合理,功能设计方面,它可能在材料领域具有潜在的变革性。它不仅将为COVID-19疫情和公共卫生保护提供快速反应,还将转化为控制其他致命病原体。该项目将为STEM学生提供培训,特别是向来自代表性不足群体的学生以及来自不同背景和教育水平的学生介绍尖端研究。此外,该项目将传播所获得的知识,以帮助提高公众的科学素养。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Shen其他文献

Electrocatalytic Oxygen Evolution: Surface‐Guided Formation of Amorphous Mixed‐Metal Oxyhydroxides on Ultrathin MnO 2 Nanosheet Arrays for Efficient Electrocatalytic Oxygen Evolution (Adv. Energy Mater. 27/2020)
电催化析氧:超薄 MnO 2 纳米片阵列上非晶态混合金属羟基氧化物的表面引导形成,实现高效电催化析氧(Adv. Energy Mater. 27/2020)
  • DOI:
    10.1002/aenm.202070117
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming Fang;Dong Han;Wen‐Bo Xu;Yun Shen;Youming Lu;Peijiang Cao;Shun Han;Wangying Xu;Deliang Zhu;Wenjun Liu;Johnny C. Ho
  • 通讯作者:
    Johnny C. Ho
DMSO_A_236698 915..923
DMSO_A_236698 915..923
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Shen;Xiaojing Ma;Yiting Xu;Yufei Wang;Jian Zhou;Yuqian Bao
  • 通讯作者:
    Yuqian Bao
Slow light in one dimensional metallic-dielectric photonic crystals due to sign change of the effective dielectric constant
由于有效介电常数的符号变化导致一维金属介电光子晶体中的慢光
  • DOI:
    10.1063/1.3666028
  • 发表时间:
    2011-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yun Shen;Guo Ping Yu;Guo Ping Wang
  • 通讯作者:
    Guo Ping Wang
IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2007), Waikiki, HI, USA
IEEE 安全与国防应用计算智能研讨会 (CISDA 2007),美国夏威夷威基基
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Martin;B. Azvine;Yun Shen
  • 通讯作者:
    Yun Shen
最新CTテクノロジーの循環器領域への臨床応用.
最新CT技术在心血管领域的临床应用。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzo Yamamoto;Rika Fukui;Haruhiko Machida;Yun Shen;Isao Tanaka;Eiko Ueno.;町田治彦
  • 通讯作者:
    町田治彦

Yun Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Shen', 18)}}的其他基金

Collaborative Research: Presence, Persistence, and Inactivation of Vesicle-Cloaked Rotavirus or Norovirus Clusters in Water
合作研究:水中囊泡包裹的轮状病毒或诺如病毒簇的存在、持久性和灭活
  • 批准号:
    2319723
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: Presence, Persistence, and Inactivation of Vesicle-Cloaked Rotavirus or Norovirus Clusters in Water
合作研究:水中囊泡包裹的轮状病毒或诺如病毒簇的存在、持久性和灭活
  • 批准号:
    2028504
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Electrospun Nanofibrous Air Filters for Coronavirus Control
RAPID:合作研究:用于控制冠状病毒的电纺纳米纤维空气过滤器
  • 批准号:
    2029411
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactions between Photoreactive 2D Nanomaterials and Biofilms
合作研究:光反应性二维纳米材料与生物膜之间的相互作用
  • 批准号:
    2136004
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactions between Photoreactive 2D Nanomaterials and Biofilms
合作研究:光反应性二维纳米材料与生物膜之间的相互作用
  • 批准号:
    1929144
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了