I-Corps: Delivering Integrated Technology for Automated Wide-Area Humanitarian Mine Action Surveys
I-Corps:为自动化广域人道主义排雷行动调查提供集成技术
基本信息
- 批准号:2313759
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of technologies that effectively detect and clear landmines over wide surface areas. Humanitarian demining is the process where agencies (governmental or otherwise) survey a potentially hazardous area to detect, identify, and subsequently clear any explosive hazards (landmines or unexploded ordinance) in a post-conflict region. The goal of humanitarian demining is to release previously explosive-contaminated land back to impacted communities to allow the land to be used and developed without fear of injury and death caused by landmines and unexploded ordnance. The enormous variety of explosives, environments in which they lie, and conditions in which they may be found, create a multi-faceted problem that requires innovative technological solutions. This project is a demonstration of the powerful and wide-reaching capabilities of drones and machine learning in humanitarian mine action applications. The implementation of this technology will dramatically increase the rate and safety of demining, increasing the safety of demining operators, and allowing communities to reclaim previously inaccessible land for future development.This I-Corps project is based on the development of an integrated artificial intelligence-assisted unmanned aerial vehicle drone survey platform that a demining agency could quickly and effectively use to perform initial wide-area surveys. This technology will save money and time on subsequent demining activities in areas of critical contamination. The methods can be expanded to detect not only direct evidence of landmines and unexploded ordinances, but also indirect evidence such as explosion craters, minefield warning signs, or dead livestock potentially killed by explosives. Combining state-of-the-art deep learning technology, commercially available drones, and miniaturized optical sensors, this team created new solutions. This technology involves drone survey methods combined with innovative deep learning algorithms. The first step consists of integrating commercial visual light, thermal and multispectral drones to survey areas that are suspected to be contaminated with explosives. After the survey is complete, the deep learning method is used to generate the predicted coordinate locations of the explosives. In addition, a high-quality map of the suspected hazardous region is produced with each predicted explosive marked and labeled with its predicted class. The entire process takes place without using the internet, is user friendly, and can detect and classify most of the aerially-visible landmines and unexploded ordinances at a rate of 800 square meters per hour.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的更广泛影响/商业潜力是开发有效探测和清除大面积地雷的技术。人道主义排雷是指各机构(政府机构或其他机构)对潜在危险区域进行调查,以探测、识别并随后清除冲突后地区的任何爆炸危险(地雷或未爆弹药)。人道主义排雷的目标是将以前受爆炸物污染的土地归还给受影响的社区,使土地能够在不用担心地雷和未爆弹药造成伤亡的情况下使用和开发。爆炸物种类繁多,所处的环境和可能被发现的条件造成了一个多方面的问题,需要创新的技术解决办法。该项目展示了无人机和机器学习在人道主义排雷行动应用中的强大和广泛的能力。该技术的实施将大大提高排雷的速度和安全性,提高排雷操作人员的安全性,并使社区能够开垦以前无法进入的土地,以供未来开发。I-Corps项目基于开发一个集成的人工智能辅助无人驾驶飞行器无人机调查平台,排雷机构可以快速有效地使用该平台进行初步的大面积调查。 这一技术将为严重污染地区的后续排雷活动节省资金和时间。这些方法可以扩展到不仅探测地雷和未爆炸弹药的直接证据,而且还探测爆炸坑、雷区警告标志或可能被爆炸物炸死的牲畜尸体等间接证据。结合最先进的深度学习技术、商用无人机和微型光学传感器,该团队创造了新的解决方案。这项技术涉及无人机调查方法与创新的深度学习算法相结合。第一步包括整合商业可见光、热和多光谱无人机,以调查怀疑被爆炸物污染的地区。调查完成后,使用深度学习方法来生成爆炸物的预测坐标位置。此外,还绘制了疑似危险区域的高质量地图,并对每种预测的爆炸物进行标记,标明其预测类别。整个过程无需使用互联网,用户友好,可以以每小时800平方米的速度检测和分类大多数空中可见的地雷和未爆炸的弹药。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Nikulin其他文献
Characterization of anisotropy in basin-scale subsurface using teleseismic receiver function analysis
使用远震接收函数分析表征盆地尺度地下的各向异性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yiran Li;Alex Nikulin - 通讯作者:
Alex Nikulin
UAV-based aeromagnetic surveys for orphaned well location: Emerging best practices
基于无人机的孤井位置航磁勘测:新兴最佳实践
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alex Nikulin;Timothy S. de Smet - 通讯作者:
Timothy S. de Smet
Successful Integration of UAV Aeromagnetic Mapping with Terrestrial Methane Emissions Surveys in Orphaned Well Remediation
无人机航磁测绘与陆地甲烷排放调查在孤井修复中的成功整合
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
T. D. Smet;Alex Nikulin;Nicholas Balrup;Nathan Graber - 通讯作者:
Nathan Graber
Alex Nikulin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Nikulin', 18)}}的其他基金
I-Corps: An integrated wide-area unmanned aerial vehicle (UAV) aeromagnetic survey system targeting orphaned oil and gas wells
I-Corps:针对孤立油气井的综合广域无人机 (UAV) 航磁勘测系统
- 批准号:
2037694 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
TUBERSCAN-VENTURE: Delivering a commercially-viable, non-destructive, data driven pipeline to quantify root crops during growth to realise maximum marketable yield and help reduce waste, contributing to net zero emissions
TUBERSCAN-VENTURE:提供商业上可行的、非破坏性的、数据驱动的管道,以量化生长过程中的块根作物,以实现最大的市场产量并帮助减少浪费,从而实现净零排放
- 批准号:
10092039 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
- 批准号:
23K28429 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
- 批准号:
10099143 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
- 批准号:
10096804 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Project NEPTUNE: Delivering Centralised Control of Connected Things
NEPTUNE 项目:提供互联事物的集中控制
- 批准号:
10074927 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant for R&D
Development of sustainable bionanocomposite materials for perishable foods & drinks shelf life extension: delivering better food for all
开发用于易腐烂食品的可持续生物纳米复合材料
- 批准号:
10075083 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Healthcare provider perspectives on the role of healthbots in delivering care to patients taking varenicline for smoking cessation
医疗保健提供者对健康机器人在为服用伐尼克兰戒烟的患者提供护理方面的作用的看法
- 批准号:
492844 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
DAWN Phase 1 FY2023-2024: A UK Industry Academic Co-design Partnership Delivering a Pre-Exascale Research Cloud for AI and Simulation
DAWN 2023-2024 财年第 1 阶段:英国行业学术联合设计合作伙伴关系,为人工智能和仿真提供前百兆亿级研究云
- 批准号:
ST/Z000386/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
- 批准号:
10666079 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: