PlantTransform: TRTech-PGR: Genotype-independent Regeneration for Recalcitrant Species Through Induced Totipotent Plant Cells
PlantTransform:TRTech-PGR:通过诱导全能植物细胞实现顽固物种的基因型独立再生
基本信息
- 批准号:2314549
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The application of biotechnology for crop trait improvement holds great promise for the implementation of more sustainable and resilient agricultural practices. For instance, the generation of crops that have been modified to require less water and fertilizer supplementation or that are more tolerant of drought conditions and resistant to plant diseases can help improve crop yields in the face of a changing climate and increasing population size. Although we have made great strides in our ability to modify the plant genome (that encodes the heritable traits of our crops) in individual cells or tissues, turning those cells or tissues back into whole plants presents a significant bottleneck in the application of biotechnology for crop trait improvement. The aim of this project is to find effective ways to reprogram cells in order to facilitate their transformation and regeneration into whole plants. To that end, we will perform studies in a model plant system, thale cress, to better understand the cellular and molecular regulation of regeneration and identify factors that can enhance the process. As proof of principle, we will subsequently implement the use of such factors in an important crop species known to be difficult to transform and regenerate, namely wheat. In addition to the planned research, we will also advance public understanding and youth involvement through the development of a lecture series for high school students in the Virginia Summer Residential Governor's School for Agriculture titled The Past, Present, and Future of Bioengineering for Crop Trait Improvement. Regeneration is a bottleneck for plant transformation, and we know little about the molecular regulatory networks that govern regeneration. This project brings together a multi-disciplinary research team to develop technology that can advance the field of plant transformation and further understanding the fundamental aspects of cell totipotence. The focus will be to enhance regeneration efficiency through ectopic expression of morphogenic transcription factors, with an emphasis on regeneration from protoplast culture. The application of genome editing technology through transient transformation of protoplasts holds great promise for the rapid generation of transgene-free edited plants, especially in highly heterozygous, outcrossing, or vegetatively propagated crop species. The project utilizes Arabidopsis as a model to investigate regeneration from protoplast culture. We will use automated digital image analysis and single-cell transcript profiling of developing microcalli as a high-throughput, information-rich platform. A collection of 20 morphogenic transcription factors will be comparatively screened in Arabidopsis for their effects on regeneration through conventional somatic tissue culture and protoplast culture. The gene regulatory networks governed by transcription factors that promote regeneration from protoplast culture will be studied to give mechanistic insight into their function. Effective transcription factors will be tested in winter wheat, a species recalcitrant to transformation and tissue culture. This project will advance our foundational understanding of totipotency and cell fate determination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应用生物技术改良作物性状为实施更可持续和更有复原力的农业做法带来了巨大希望。例如,经过改良的作物需要较少的水和肥料补充,或更能耐受干旱条件和抵抗植物病害,这有助于在气候变化和人口增加的情况下提高作物产量。虽然我们在修改单个细胞或组织中的植物基因组(编码我们作物的遗传性状)的能力方面取得了很大进展,但将这些细胞或组织重新变成整个植物是生物技术应用于作物性状改良的一个重大瓶颈。该项目的目的是找到有效的方法来重新编程细胞,以促进它们转化和再生为完整的植物。为此,我们将在一个模式植物系统,塔勒水芹,以更好地了解再生的细胞和分子调控和识别因素,可以提高这一进程进行研究。作为原理的证明,我们随后将在已知难以转化和再生的重要作物物种,即小麦中实施这些因子的使用。除了计划中的研究,我们还将通过在弗吉尼亚州夏季住宅州长农业学校为高中生开发一系列讲座,以促进公众的理解和青年的参与,该系列讲座的标题为过去,现在和未来的生物工程作物性状改良。再生是植物转化的一个瓶颈,我们对调控再生的分子调控网络知之甚少。该项目汇集了一个多学科的研究团队,以开发可以推进植物转化领域的技术,并进一步了解细胞分化的基本方面。重点将是通过形态发生转录因子的异位表达来提高再生效率,重点是原生质体培养的再生。通过原生质体的瞬时转化应用基因组编辑技术对于快速产生无转基因编辑的植物,特别是在高度杂合、异交或无性繁殖的作物物种中,具有很大的希望。该项目利用拟南芥作为模型来研究原生质体培养的再生。我们将使用自动化数字图像分析和单细胞转录谱开发微愈伤组织作为一个高通量,信息丰富的平台。本研究通过拟南芥常规体细胞培养和原生质体培养,比较筛选了20个形态发生转录因子对再生的影响。将研究由促进原生质体培养再生的转录因子支配的基因调控网络,以深入了解其功能。有效的转录因子将在冬小麦中进行测试,冬小麦是一种难以转化和组织培养的物种。该项目将推进我们对全能性和细胞命运决定的基本理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bastiaan Bargmann其他文献
Bastiaan Bargmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bastiaan Bargmann', 18)}}的其他基金
Collaborative Research: Hormonal control of stamen filament growth
合作研究:雄蕊丝生长的激素控制
- 批准号:
2343702 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334028 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TRTech-PGR: PlantTransform: Boosting Agrobacterium-mediated transformation efficiency in the orphan crop tef (Eragrostis tef) for trait improvement
TRTech-PGR:PlantTransform:提高孤儿作物 tef(画眉草 tef)中农杆菌介导的转化效率,以改善性状
- 批准号:
2327906 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334027 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
- 批准号:
2322957 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
EAGER: TRTech-PGR: New methods to study gene-specific translation regulation
EAGER:TRTech-PGR:研究基因特异性翻译调控的新方法
- 批准号:
2327912 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310396 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: Optimization of Virus-based Delivery of Guide RNAs for Heritable Editing in Maize
合作研究:TRTech-PGR:基于病毒的引导 RNA 递送优化,用于玉米遗传编辑
- 批准号:
2303522 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310395 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TRTech-PGR: Establishing a one-stop-shop for plant metabolism annotations and launching a plant enzyme function consortium
TRTech-PGR:建立植物代谢注释一站式服务并启动植物酶功能联盟
- 批准号:
2312181 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TRTech-PGR: Reprogramming the Plant Cell with Transcription Factors
TRTech-PGR:用转录因子对植物细胞进行重编程
- 批准号:
2315723 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant