Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
基本信息
- 批准号:2316420
- 负责人:
- 金额:$ 39.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many disciplines today, there is an increasing availability of multiple and complementary data associated with a given problem, and the main challenge is extracting and effectively summarizing the relevant information from these large number of datasets. Joint decomposition of these datasets, arranged as matrices or tensors, provides an attractive solution to data fusion by letting them fully interact and inform each other and yields factor matrices that are directly interpretable, where the resulting factors (components) are directly associated with quantities of interest. This research will provide a powerful solution for inference from large-scale data by effectively summarizing the heterogeneity in large datasets through the definition of homogeneous subspaces such that components within a subspace are highly dependent. The success of the methods will be demonstrated through identification of homogeneous subgroups of subjects from neuroimaging data, thus enabling personalized medicine whose goal is to tailor intervention strategies for a given individual. Effectively summarizing information in large-scale datasets is at the heart of many of today's challenging problems, hence the new set of tools will impact numerous areas in science and technology, including those in medical imaging, remote sensing, image/video processing, communications, and social networks. Independent vector analysis (IVA) and coupled tensor factorizations are two powerful ways for working with spatio-temporal data, each exploiting the structural/dependence information through different mechanisms. They also provide strong uniqueness guarantees, which is key for interpretability. This project leverages the complementary strengths of IVA and coupled tensor decompositions to develop a powerful framework for joint analysis/fusion of a large number of datasets through automated identification of homogeneous subspaces along with the components within these subspaces. This is accomplished by initially developing effective solutions to the problem with IVA and with coupled tensor decompositions, working in parallel. Then, in a second stage, the connections between these two approaches are established, both in terms of methods and uniqueness conditions, to develop a methodology that leverages the strengths of both approaches. The emphasis on uniqueness and interpretability of the solutions together with an application to a challenging dataset will ensure that the methods, as well as the developed theoretical foundations, are not only complete but also practically useful. Another important aspect of the work is the establishing of bridges across two communities that do not necessarily communicate. The work will demonstrate that statistically and algebraically motivated approaches to data fusion are not in competition with each other but have important complementary aspects that can be effectively leveraged. In addition, a clear view of their connections as well as differences enables fair comparisons of all methods clearly highlighting their abilities together with their limitations. This will help establish a solid and well-balanced foundation for the growing fields of data science and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今的许多学科中,与给定问题相关的多个和互补数据的可用性越来越高,主要挑战是从这些大量数据集中提取和有效总结相关信息。这些数据集的联合分解,排列为矩阵或张量,通过让它们完全交互并相互通知,为数据融合提供了一个有吸引力的解决方案,并产生可直接解释的因子矩阵,其中所产生的因子(分量)直接与感兴趣的量相关联。这项研究将提供一个强大的解决方案,从大规模数据的推理,有效地总结了异质性的大型数据集,通过定义的同质子空间,使组件内的子空间是高度依赖的。这些方法的成功将通过从神经影像学数据中识别同质的受试者亚组来证明,从而实现个性化医疗,其目标是为特定个体定制干预策略。有效地总结大规模数据集中的信息是当今许多具有挑战性的问题的核心,因此这套新工具将影响科学和技术的许多领域,包括医学成像、遥感、图像/视频处理、通信和社交网络。独立向量分析(IVA)和耦合张量因子分解是处理时空数据的两种强大方法,每种方法都通过不同的机制利用结构/依赖信息。它们还提供了强大的唯一性保证,这是可解释性的关键。该项目利用IVA和耦合张量分解的互补优势,通过自动识别同质子空间沿着与这些子空间内的组件,开发了一个强大的框架,用于联合分析/融合大量数据集。这是通过最初开发有效的解决方案的问题与IVA和耦合张量分解,并行工作。然后,在第二阶段,建立这两种方法之间的联系,无论是在方法和独特性条件方面,开发一种方法,利用这两种方法的优势。强调解决方案的唯一性和可解释性,并将其应用于具有挑战性的数据集,将确保方法以及开发的理论基础不仅完整,而且实用。这项工作的另一个重要方面是在两个不一定交流的社区之间建立桥梁。这项工作将表明,统计和代数动机的数据融合的方法是不是在相互竞争,但有重要的互补方面,可以有效地利用。此外,清楚地了解它们之间的联系和差异,可以对所有方法进行公平的比较,清楚地突出它们的能力和局限性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tulay Adali其他文献
Kernelization of Tensor-Based Models for Multiway Data Analysis
用于多路数据分析的基于张量的模型的核化
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:14.9
- 作者:
Qibin Zhao;Guoxu Zhou;Tulay Adali;Liqing Zhang;Andrzej Cichocki - 通讯作者:
Andrzej Cichocki
Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data
从矩阵到高阶张量的链接成分分析:在生物医学数据中的应用
- DOI:
10.1109/jproc.2015.2474704 - 发表时间:
2015-08 - 期刊:
- 影响因子:20.6
- 作者:
Yu Zhang;Tulay Adali;Shangli Xie;Andrzej Cichocki - 通讯作者:
Andrzej Cichocki
Tulay Adali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tulay Adali', 18)}}的其他基金
CIF: Small: Source Separation with an Adaptive Structure for Multi-Modal Data Fusion
CIF:小型:具有自适应结构的源分离,用于多模态数据融合
- 批准号:
1618551 - 财政年份:2016
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Entropy Rate for Source Separation and Model Selection: Applications in fMRI and EEG Analysis
CIF:小型:合作研究:源分离和模型选择的熵率:在功能磁共振成像和脑电图分析中的应用
- 批准号:
1117056 - 财政年份:2011
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Canonical Dependence Analysis for Multi-modal Data Fusion and Source Separation
III:小:协作研究:多模态数据融合和源分离的典型依赖分析
- 批准号:
1017718 - 财政年份:2010
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: SEI: Independent Component Analysis of Complex-Valued Brain Imaging Data
合作研究:SEI:复值脑成像数据的独立成分分析
- 批准号:
0612076 - 财政年份:2006
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: Complex-Valued Signal Processing and its Application to Analysis of Brain Imaging Data
合作研究:复值信号处理及其在脑成像数据分析中的应用
- 批准号:
0635129 - 财政年份:2006
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Ultra-High-Capacity Optical Communications and Networking: Signal Processing for High-Data-Rate Optical Communications Systems
超高容量光通信和网络:高数据速率光通信系统的信号处理
- 批准号:
0123409 - 财政年份:2002
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
CAREER: Maximum Partial Likelihood Methods for Communications
职业:通信的最大部分似然法
- 批准号:
9703161 - 财政年份:1997
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Adaptive Signal Processing for Communications by Maximum Partial Likelihood Estimation
通过最大部分似然估计进行通信的自适应信号处理
- 批准号:
9614236 - 财政年份:1996
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321490 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Systems Support for Run-Anywhere Serverless
协作研究:CISE:大型:对 Run-Anywhere Serverless 的系统支持
- 批准号:
2321725 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318711 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant














{{item.name}}会员




