Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs

合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录

基本信息

  • 批准号:
    2318549
  • 负责人:
  • 金额:
    $ 36.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Two important issues facing modern empirical research are those of transparency (how well others can figure out how the research was done) and replicability (whether the outcomes will be the same if someone else does the same experiments). Lack of transparency and failures of experiments to replicate stifle scientific progress and lead to a mistrust of the scientific method. This project develops an open-source programming language, SweetPea, that automates experimental design. It will help researchers understand and replicate the results of others, minimize errors and bias, and increase the efficiency and accuracy of the entire experimental process. Consequently, this technology will contribute to advancing scientific discoveries, make them more accessible and reliable, and provide researchers in empirical sciences with a valuable tool to aid their work.Many replication problems in the behavioral sciences arise because of the challenges encountered in implementing accurate and appropriately balanced experimental designs while avoiding confounding factors. Additionally, the lack of clear and transparent documentation reduces transparency and the ability to replicate experimental results. The SweetPea programming language is designed to facilitate reproducible experimental design. This project extends SweetPea's core functionality to support various design strategies, automating the documentation process, and expanding the community of users and contributors. SweetPea uses an intuitive interface for the declarative expression of experimental designs, and advanced computational algorithms for sampling and analysis. The software ensures that experimental designs are properly implemented without introducing unexpected confounds. In addition, the project leverages large language models for robust documentation of experimental designs. The project includes outreach activities to engage psychologists, neuroscientists, behavioral economists, and machine learning experts. Overall, this project improves the accuracy, transparency, and replicability of experimental designs, offering researchers an accessible and powerful tool for scientific investigation. This project is jointly funded by the Human Networks and Data Science - Infrastructure program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代实证研究面临的两个重要问题是透明度(其他人能在多大程度上弄清楚研究是如何完成的)和可复制性(如果其他人做同样的实验,结果是否会相同)。 缺乏透明度和重复实验的失败扼杀了科学进步,导致对科学方法的不信任。 该项目开发了一种开源编程语言SweetPea,可自动化实验设计。 它将帮助研究人员理解和复制他人的结果,最大限度地减少错误和偏差,并提高整个实验过程的效率和准确性。因此,这项技术将有助于推进科学发现,使它们更容易获得和可靠,并为实证科学的研究人员提供一个有价值的工具,以帮助他们的工作。行为科学中的许多重复问题的出现,是因为在实施准确和适当平衡的实验设计时遇到的挑战,同时避免混淆因素。 此外,缺乏清晰和透明的文件降低了透明度和复制实验结果的能力。SweetPea编程语言旨在促进可重复的实验设计。该项目扩展了SweetPea的核心功能,以支持各种设计策略,自动化文档流程,并扩大用户和贡献者社区。SweetPea使用直观的界面进行实验设计的声明式表达,并使用先进的计算算法进行采样和分析。 该软件可确保正确实施实验设计,而不会引入意外的混淆。此外,该项目利用大型语言模型为实验设计提供强大的文档。 该项目包括外展活动,以吸引心理学家,神经科学家,行为经济学家和机器学习专家。总体而言,该项目提高了实验设计的准确性,透明度和可复制性,为研究人员提供了一个可访问和强大的科学调查工具。 该项目由人类网络和数据科学-基础设施计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian Musslick其他文献

An integrative effort: Bridging motivational intensity theory and recent neurocomputational and neuronal models of effort and control allocation.
综合努力:将动机强度理论与最新的努力和控制分配的神经计算和神经元模型联系起来。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Silvestrini;Sebastian Musslick;A. Berry;E. Vassena
  • 通讯作者:
    E. Vassena
Parallel Processing Capability Versus Efficiency of Representation in Neural Networks
并行处理能力与神经网络表示效率
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastian Musslick;Biswadip Dey;Kayhan Özcimder;Theodore L. Willke
  • 通讯作者:
    Theodore L. Willke
On the Rational Boundedness of Cognitive Control: Shared Versus Separated Representations
论认知控制的理性有界性:共享表征与分离表征
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastian Musslick;Andrew M. Saxe;A. N. Hoskin;Daniel Reichman;J. Cohen
  • 通讯作者:
    J. Cohen
Mental effort: One construct, many faces?
脑力劳动:一种构造,许多面孔?
Decomposing Individual Differences in Cognitive Control: A Model-Based Approach
分解认知控制中的个体差异:基于模型的方法

Sebastian Musslick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R Networks and Health Disparities in Delays in Diagnosis of Medical Conditions with Ambiguous Symptoms
合作研究:HNDS-R 网络和症状不明确的医疗状况诊断延迟造成的健康差异
  • 批准号:
    2241537
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244805
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
  • 批准号:
    2318203
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R: Human Networks, Sustainable Development, and Lived Experience in a Nonindustrial Society
合作研究:HNDS-R:人类网络、可持续发展和非工业社会的生活经验
  • 批准号:
    2212898
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R: Polarization, Information Integrity, and Diffusion
合作研究:HNDS-R:极化、信息完整性和扩散
  • 批准号:
    2242072
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
HNDS-R - Collaborative Research: An Integrated Analysis of the COVID-19 Crisis on Labor Market Outcomes and Mortality
HNDS-R - 协作研究:COVID-19 危机对劳动力市场结果和死亡率的综合分析
  • 批准号:
    2242472
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
HNDS-R - Collaborative Research: An Integrated Analysis of the COVID-19 Crisis on Labor Market Outcomes and Mortality
HNDS-R - 协作研究:COVID-19 危机对劳动力市场结果和死亡率的综合分析
  • 批准号:
    2242581
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了