Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
基本信息
- 批准号:2318611
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Pressing challenges such as climate change and the necessity to reduce carbon emissions require the transition from gasoline-powered vehicles to electric vehicles. The Federal Government has set a goal to make half of all new vehicles sold in the U.S. in 2030 zero-emissions vehicles. It is projected that there will be 26.4 million electric vehicles on U.S. roads in 2030. One concern regarding the adoption of electric vehicles is the ability of power systems to accommodate their high-power demand. Another concern is the present high costs of electric vehicles, which make them unaffordable for most of the country’s population. This project contributes a solution to address both the concerns. First, it contributes to developing advanced intelligent demand response programs, which have been recognized as being effective in shaving peak demand of power systems (including the demand by electric vehicles), thereby reducing the system operation cost and cutting costs by deferring equipment upgrade and investment. Such intelligent demand response programs can potentially save billions of dollars annually. Second, the project develops intelligent algorithms that enable transactions between electric vehicles and power grids, where the vehicle owners can make considerable additional income by charging during off-peak hours and selling (i.e., discharging) power back to the power system during peak hours. The owners can earn thousands of dollars per year, thereby offsetting the high costs of electric vehicles and making them more affordable. Furthermore, the project supports underrepresented minorities and female students participating in high-level and high-quality research. Its overall outcomes increase sustainable development and economic competitiveness of the United States.The emphasis of this project is to advance artificial intelligence and machine learning algorithms for optimal management of electric vehicles interactions with the electric power grid. First, a hierarchical forecasting framework that is scalable and distributable is developed using cellular computational networks. Electric vehicle charging (Grid-to-Vehicle) and discharging (Vehicle-to-Grid) potential transactions are forecasted. Secondly, a hierarchical architecture-based methodology for scalable demand response with electric vehicles is developed. The hierarchical demand response architecture overlaying the physical hierarchy of the power system allows for decomposing the demand response to tackle the electric vehicle’s problem and solve it in a distributed manner. The computational time required to solve this optimization problem using this framework is only dependent on the number of levels in the hierarchical architecture. Thirdly, an adaptive critic design approach based on combined concepts of approximate dynamic programming and reinforcement learning is created for utilizing the capabilities of the electric vehicle battery systems for optimal reactive power compensation and voltage control on the distribution system. This is essential to maintain grid security and reliability as the number of electric vehicles penetrating the electric power distribution system rapidly grows to millions over the next few decades.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
紧迫的挑战,例如气候变化和减少碳排放所需的必要挑战,需要从汽油动力的车辆过渡到电动汽车。联邦政府设定了一个目标,是在2030年在美国出售的所有新车辆中的一半。预计2030年美国道路上将有2640万辆电动汽车。采用电动汽车的一个担忧是电力系统适应其高功率需求的能力。另一个问题是目前的电动汽车成本高昂,这使得它们在该国大多数人口中无法承受。该项目为解决这两个问题的解决方案做出了贡献。首先,它有助于制定先进的智能需求响应计划,这些计划被认为有效地刮去了电力系统的峰值需求(包括电动汽车的需求),从而降低了系统运行成本和通过推迟设备升级和投资来降低成本。这种智能需求响应计划可能每年节省数十亿美元。其次,该项目开发了智能算法,这些算法可以使电动汽车和电网之间的交易,在此期间,车主可以在非高峰时段充电并在高峰时段销售(即,将电力释放回电力系统)来赚取大量收入。业主每年可以赚取数千美元,从而抵消电动汽车的高昂成本并使其更实惠。此外,该项目支持代表性不足的少数群体和女学生参加高级和高质量研究。它的整体成果提高了美国的可持续发展和经济竞争力。该项目的重点是推进人工智能和机器学习算法,以最佳地管理电动汽车与电力电网的交互。首先,使用蜂窝计算网络开发可扩展和分配的分层预测框架。预计电动汽车充电(车辆到车辆)和排放(车辆到网格)的潜在交易已预测。其次,开发了基于层次结构的基于层次结构的方法,用于对电动汽车的可扩展需求响应。覆盖电力系统物理层次结构的层次需求响应架构允许分解需求响应以解决电动汽车的问题并以分布式方式解决。使用此框架解决此优化问题所需的计算时间仅取决于分层体系结构中的级别数量。第三,创建了一种基于近似动态编程和强化学习概念的自适应关键设计方法,用于利用电动汽车电池系统的功能,以实现最佳的反应性电源补偿和分配系统的电压控制。这对于维持电网安全性和可靠性至关重要,因为在接下来的几十年中,穿透电力发电系统的电动汽车数量迅速增长到数百万美元。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ha Le其他文献
Bringing students to real-world training environment through service-learning senior capstone projects with K-12 outreach activities
通过服务学习高级顶点项目和 K-12 外展活动,将学生带入现实世界的培训环境
- DOI:
10.18260/1-2--31820 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhen Yu;Ha Le - 通讯作者:
Ha Le
Assessment of Components, Antibacterial and Antioxidant Effects of Vernonia Amygdalina Del.
扁桃斑鸠菊成分、抗菌和抗氧化作用的评估。
- DOI:
10.21694/2380-5706.21001 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Duong;Trinh Tang;Linh Nguyen;Linh Nguyen;;Tuy;Tram Tang;T. Nguyen;Chi Nguyen;Nguyet Do;Ha Le;Huong Cao;Dinh Tran;Hung Tran - 通讯作者:
Hung Tran
A Gain-Adaptive Column Amplifier for Wide-Dynamic-Range CMOS Image Sensors
用于宽动态范围 CMOS 图像传感器的增益自适应列放大器
- DOI:
10.1109/ted.2013.2279238 - 发表时间:
2013 - 期刊:
- 影响因子:3.1
- 作者:
Ha Le;A. Xhakoni;G. Gielen - 通讯作者:
G. Gielen
Prevent crime and save money: Application of return-on-investment models in the Australian context
预防犯罪并省钱:投资回报模型在澳大利亚的应用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
J. Heerde;J. Toumbourou;S. Hemphill;Ha Le;Todd I. Herrenkohl;R. Catalano - 通讯作者:
R. Catalano
A Low-Noise High-Frame-Rate 1-D Decoding Readout Architecture for Stacked Image Sensors
用于堆叠图像传感器的低噪声高帧率一维解码读出架构
- DOI:
10.1109/jsen.2014.2307792 - 发表时间:
2014 - 期刊:
- 影响因子:4.3
- 作者:
A. Xhakoni;Ha Le;G. Gielen - 通讯作者:
G. Gielen
Ha Le的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant