Manufacturing of High-Performance Tactile Sensors by High Resolution 3D Printing and Conformal Polymer Coating
通过高分辨率 3D 打印和保形聚合物涂层制造高性能触觉传感器
基本信息
- 批准号:2318677
- 负责人:
- 金额:$ 51.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Like human skin, tactile sensors are the e-skin for robotics and personalized medical devices to perceive and interact with the environment. Most existing tactile sensors can detect either hair-like soft objects, or spoon-like stiff ones, but not both. Also, the sensing time ranges from milliseconds to seconds, which is too slow for detecting fast-changing signals, such as vibrational or fast-moving objects. This award supports research that investigates the manufacturing of high-performance tactile sensors that can detect various sizes of objects within microseconds. This project advances the knowledge about high-resolution three-dimensional printing of multi-scale structures and their conformal polymer coating for functionality. The high-performance tactile sensors have the potential to replace those currently employed, such as in touch screen displays, security systems, human-machine interaction, and virtual reality devices. The project addresses manufacturing challenges of forming complex structures and making functional materials. The outcomes can provide a manufacturing tool for many engineering applications requiring novel geometries and materials, such as chemical sensors, photodetectors, batteries, capacitors, and chemical catalysts. The method can also be used to make biological implants with multiscale structures for better cell attachment. This project introduces STEM students, especially, underrepresented minorities to wearable electronics and robotics and stimulates them for careers in engineering. This project enables a new manufacturing capability for hierarchically architected structures with multiple length scales from nanoscale to centimeter scale. This approach is a paradigm shift in manufacturing functional devices, where micron-scale 3D printing fabricates the flexible multiscale substrates while the oxidative chemical-vapor-deposition (oCVD) technique is used to coat with polymers and nanomaterials for functionalities, such as conductivity and sensing. The project advances the fundamental manufacturing knowledge in many ways. It establishes a method to control spatial-temporal exposures for sub-pixel resolutions, which benefits all photo-polymerization processes. By analyzing and engineering the interfacial properties and adhesion characteristics, the project establishes conformal coating strategies which result in a seamless but thin conductive layer to maximize the effect of the multiscale patterns. By a hierarchically architected shape with geometry features across multiple length scales, it determines sensing performance improvements and mechanisms for structure deformation and recovery in microseconds. The project establishes a new benchmark to evaluate the effect of contact angle and object size on the sensing performance for sophisticated activities such as robot object manipulation. A set of guidelines to design sensor shapes and engineer 3D printing and oCVD coating parameters is established and is made available to the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与人类皮肤一样,触觉传感器是机器人和个性化医疗设备的电子皮肤,用于感知环境并与环境交互。大多数现有的触觉传感器可以检测头发状的柔软物体,或者勺子状的坚硬物体,但不能同时检测两者。此外,感测时间的范围从毫秒到秒,这对于检测快速变化的信号(例如振动或快速移动的物体)来说太慢了。该奖项支持研究高性能触觉传感器的制造,这些传感器可以在微秒内检测各种尺寸的物体。该项目推进了多尺度结构的高分辨率三维打印及其功能性保形聚合物涂层的知识。高性能触觉传感器有可能取代目前使用的传感器,例如触摸屏显示器,安全系统,人机交互和虚拟现实设备。该项目解决了形成复杂结构和制造功能材料的制造挑战。这些成果可以为许多需要新型几何形状和材料的工程应用提供制造工具,例如化学传感器,光电探测器,电池,电容器和化学催化剂。该方法还可以用于制造具有多尺度结构的生物植入物,以更好地附着细胞。该项目向STEM学生,特别是代表性不足的少数族裔介绍可穿戴电子产品和机器人技术,并刺激他们从事工程职业。该项目为具有从纳米级到厘米级的多个长度尺度的分层结构提供了新的制造能力。这种方法是制造功能设备的范式转变,其中微米级3D打印制造柔性多尺度基底,而氧化化学气相沉积(oCVD)技术用于涂覆聚合物和纳米材料以实现功能,如导电性和传感。该项目在许多方面推进了基础制造知识。它建立了一种方法来控制亚像素分辨率的时空曝光,这有利于所有的光聚合过程。通过分析和设计界面特性和粘附特性,该项目建立了保形涂层策略,从而形成无缝但薄的导电层,以最大限度地发挥多尺度图案的效果。通过具有跨多个长度尺度的几何特征的分层架构形状,它决定了传感性能的改进以及微秒内结构变形和恢复的机制。该项目建立了一个新的基准,以评估接触角和物体尺寸对机器人物体操作等复杂活动的传感性能的影响。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huachao Mao其他文献
Mask Video Projection Based Stereolithography With Continuous Resin Flow to Build Digital Models in Minutes
基于掩模视频投影的立体光刻技术,通过连续树脂流在几分钟内构建数字模型
- DOI:
10.1115/msec2018-6708 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiangjia Li;Huachao Mao;Yayue Pan;Yong Chen - 通讯作者:
Yong Chen
Curved Layer Slicing based on Isothermal Surface
基于等温面的曲面层切片
- DOI:
10.1016/j.promfg.2021.06.081 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yujie Shan;D. Gan;Huachao Mao - 通讯作者:
Huachao Mao
BOM-based knowledge representation and reasoning for collaborative product development
基于 BOM 的知识表示和推理,用于协作产品开发
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.2
- 作者:
Gongzhuang Peng;Huachao Mao;Hongwei Wang;Heming Zhang - 通讯作者:
Heming Zhang
A vibration-assisted method to reduce separation force for stereolithography
一种减少立体光刻分离力的振动辅助方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:6.2
- 作者:
Jie Jin;Jingfan Yang;Huachao Mao;Yong Chen - 通讯作者:
Yong Chen
Approximate Functionally Graded Materials for Multi-Material Additive Manufacturing
用于多材料增材制造的近似功能梯度材料
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yuen;Huachao Mao;Yong Chen - 通讯作者:
Yong Chen
Huachao Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huachao Mao', 18)}}的其他基金
FMSG: Cyber: 3D Printing of Holographic Optical Processors
FMSG:网络:全息光学处理器的 3D 打印
- 批准号:
2328362 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
相似海外基金
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
- 批准号:
EP/Z001013/1 - 财政年份:2025
- 资助金额:
$ 51.05万 - 项目类别:
Fellowship
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Continuing Grant
Electrolyte design for high-performance, sustainable sodium batteries
高性能、可持续钠电池的电解质设计
- 批准号:
DE240100480 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Discovery Early Career Researcher Award
Competence Greenwashing: The impact of ESG skills misrepresentation on corporate sustainability performance
能力“漂绿”:ESG 技能的误传对企业可持续发展绩效的影响
- 批准号:
24K16445 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Labor Mobility on Inventory Holdings and Firm Performance: Evidence from the Inevitable Disclosure Doctrine
劳动力流动对库存持有和公司绩效的影响:不可避免披露原则的证据
- 批准号:
24K16474 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Impact of Dynamic Capabilities, Technological Readiness and Information Exchange Capabilities on the Resilience and Performance of Circular Supply Chains
动态能力、技术准备度和信息交换能力对循环供应链的弹性和绩效的影响
- 批准号:
24K05087 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
- 批准号:
EP/Y017412/1 - 财政年份:2024
- 资助金额:
$ 51.05万 - 项目类别:
Fellowship