Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks

合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证

基本信息

  • 批准号:
    2319243
  • 负责人:
  • 金额:
    $ 37.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Neural Networks (NNs) have revolutionized the way we operate and manage modern power systems, providing remarkable solutions to modeling complex non-linear relationships and performing pattern recognition tasks using abundant data collected by state-of-the-art monitoring sensors. Despite the promising advantages, the efficiency and reliability of these models can be negatively impacted by noisy or biased power measurements and the unpredictability of renewable energy sources. The NN-based models are further complicated by their inherent non-linear, high-dimensional nature and vulnerability to adversarial attacks. Recognizing the risks associated with empirical methods that lack formal robustness guarantees, especially in a field where model failures can lead to disastrous real-world consequences, this project seeks to enhance the security and reliability of power systems by optimizing the cutting-edge NN verifier (alpha, beta-CROWN) tailored to the characteristics of modern power systems. The resulting improvements aim to provide power grid operators with safe, dependable tools to operate the power systems. Moreover, this project also intends to support education and research initiatives, encompassing the fields of machine learning and power system, for both bachelor's and master's degree students.With a vision to bridge the existing gap between the power systems and the robust neural network verification techniques, this project is divided into three thrusts. In Thrust I, the project will extend the applications of NN verifiers to topology-aware power systems, examining different scenarios that include complete and incomplete verification on various model structures and adjusting branch and bound heuristics accordingly. Thrust II will enhance the effectiveness of current NN verifiers by incorporating power system static and dynamic constraints and further improve verification efficiency through certifiable training. Lastly, in Thrust III, the project will develop specially designed verifiers for power systems to serve as a novel tool for sensitivity analysis-based power system planning. This last component incorporates verification approaches for the first time, utilizing explainable Artificial Intelligence within power systems. Collectively, these research efforts will revolutionize people’s understanding and application of formal robustness verification techniques to power systems, ensuring the security and dependability of modern power networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经网络(nn)已经彻底改变了我们操作和管理现代电力系统的方式,为复杂的非线性关系建模和使用最先进的监测传感器收集的大量数据执行模式识别任务提供了卓越的解决方案。尽管这些模型具有很好的优势,但它们的效率和可靠性可能会受到噪声或有偏差的功率测量和可再生能源的不可预测性的负面影响。基于神经网络的模型由于其固有的非线性、高维性质和对抗性攻击的脆弱性而进一步复杂化。认识到与缺乏正式鲁棒性保证的经验方法相关的风险,特别是在模型故障可能导致灾难性现实后果的领域,该项目旨在通过优化针对现代电力系统特征量身定制的尖端神经网络验证器(alpha, beta-CROWN)来提高电力系统的安全性和可靠性。由此产生的改进旨在为电网运营商提供安全、可靠的工具来操作电力系统。此外,该项目还打算支持教育和研究计划,包括机器学习和电力系统领域,为学士和硕士学位的学生。为了弥合电力系统与鲁棒神经网络验证技术之间的现有差距,该项目分为三个重点。在推力I中,该项目将把神经网络验证器的应用扩展到拓扑感知电力系统,检查不同的场景,包括对各种模型结构的完整和不完整验证,并相应地调整分支和定界启发式。推力II将通过结合电力系统静态和动态约束来提高现有神经网络验证器的有效性,并通过可认证的培训进一步提高验证效率。最后,在推力III中,该项目将为电力系统开发专门设计的验证器,作为基于灵敏度分析的电力系统规划的新工具。最后一个组件首次结合了验证方法,在电力系统中利用可解释的人工智能。总的来说,这些研究工作将彻底改变人们对电力系统形式鲁棒性验证技术的理解和应用,确保现代电网的安全性和可靠性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ren Wang其他文献

The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents
超声对非水溶剂中脂肪酶催化芒果苷区域选择性酰化的影响
  • DOI:
    10.1080/10286020903431080
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jin Tian;Zhi Wang;Xiaofei Wei;Chunyuan Li;Zhao Bo;Tengfei Ji;Shugui Cao;Yalun Su;Ren Wang;Lei Wang
  • 通讯作者:
    Lei Wang
ESSAYS ON MONETARY POLICY, CHINA'S ECONOMY AND EXCHANGE RATE
货币政策、中国经济和汇率论文
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ren Wang
  • 通讯作者:
    Ren Wang
Facile and Effcient Construction of Water-Soluble Biomaterials with Tunable Mesoscopic Structures Using All-Natural Edible Proteins
使用全天然可食用蛋白质轻松高效地构建具有可调介观结构的水溶性生物材料
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Tao Wang;Xianfu Chen;Qixin Zhong;Zhengxing Chen;Ren Wang;Ashok Patel
  • 通讯作者:
    Ashok Patel
Reinforcement learning-based detection method for malware behavior in industrial control systems
基于强化学习的工控系统恶意软件行为检测方法
Strength behavior of the gravelly soils and influence on landslides amp; debris flows in Jiangjia Ravinn
碎石土的强度特性及其对滑坡的影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    胡明鉴;Ren Wang;Houzhen Wei;A Yin
  • 通讯作者:
    A Yin

Ren Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ren Wang', 18)}}的其他基金

CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
  • 批准号:
    2246157
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
  • 批准号:
    2313411
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
  • 批准号:
    2319182
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319400
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319399
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
  • 批准号:
    2425711
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318954
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: The Phlox framework for verifying a high-performance distributed database
合作研究:FMitF:第一轨:用于验证高性能分布式数据库的 Phlox 框架
  • 批准号:
    2319167
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了